Accesso libero

Assisted migration vs. close-to-nature forestry: what are the prospects for tree populations under climate change?

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., Curtis-McLane, S., 2008: Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1:95–111.10.1111/j.1752-4571.2007.00013.x335239525567494Search in Google Scholar

Aitken, S. N., Whitlock, M. C., 2013: Assisted gene flow to facilitate local adaptation to climate change. Annual Review of Ecology, Evolution and Systematics, 44:367–388.10.1146/annurev-ecolsys-110512-135747Search in Google Scholar

Aitken, S. N., Bemmels, J. B., 2016: Time to get moving: assisted gene flow of forest trees. Evolutionary Applications, 9:271–90.10.1111/eva.12293478037327087852Search in Google Scholar

Anderson, J. T., 2016: Plant fitness in a rapidly changing world. New Phytologist, 210:81–87.10.1111/nph.1369326445400Search in Google Scholar

Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G. J., Schall, P. et al., 2009: Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24:473–482.10.1080/02827580903418224Search in Google Scholar

Bošeľa, M., Popa, I., Gömöry, D., Longauer, R., Tobin, B., Kyncl, J. et al., 2016: Effects of post-glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir. Journal of Ecology, 104:716–724.10.1111/1365-2745.12561Search in Google Scholar

Brang, P., Spathelf, P., Larsen, J. B., Bauhus, J., Bončina, A., Chauvin, C. et al., 2014. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry, 87:492–503.10.1093/forestry/cpu018Search in Google Scholar

Brunet, J., Larson-Rabin, Z., Stewart, C. M., 2012: The distribution of genetic diversity within and among populations of the Rocky Mountain columbine: the impact of gene flow, pollinators, and mating system. International Journal of Plant Sciences,173:484–494.10.1086/665263Search in Google Scholar

Charlesworth, D., Willis, J. H., 2009: The genetics of inbreeding depression. Nature Reviews Genetics, 10:783–796.10.1038/nrg266419834483Search in Google Scholar

Darychuk, N., Hawkins, B. J., Stoehr, M., 2012: Tradeoffs between growth and cold and drought hardiness in submaritime Douglas-fir. Canadian Journal of Forest Research, 42:1530–154110.1139/x2012-092Search in Google Scholar

DeWitt, T. J., Scheiner, S. M., 2004: Phenotypic variation from single genotypes: a primer. In: DeWitt, T. J., Scheiner, S. M. (eds.): Phenotypic plasticity functional and conceptual approaches. New York, Oxford University Press, p. 1–9.Search in Google Scholar

Fady, B., Cottrell, J., Ackzell, L., Alía, R., Muys, B., Prada, A. et al., 2016: Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Regional Environmental Change, 16:927–939.10.1007/s10113-015-0843-9Search in Google Scholar

Falconer, D. S., Mackay, T. F. C., 1996: Introduction to Quantitative Genetics. Harlow, Longman Press, 480 p.Search in Google Scholar

Feurdean, A., Bhagwat, S. A., Willis, K. J., Birks, H. J. B., Lischke, H., Hickler, T., 2013: Tree migration-rates: narrowing the gap between inferred post-glacial rates and projected rates. PLoS ONE, 8:e71797.10.1371/journal.pone.0071797375331723990991Search in Google Scholar

Fick, S. E., Hijmans, R. J., 2017: Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37:4302–4315.10.1002/joc.5086Search in Google Scholar

Finkeldey, R., Ziehe, M., 2004: Genetic implications of silvicultural regimes. Forest Ecology and Management, 197:231–244.10.1016/j.foreco.2004.05.036Search in Google Scholar

Gömöry, D., Foffová, E., Longauer, R., Krajmerová, D., 2015: Memory effects associated with the early-growth environment in Norway spruce and European larch. European Journal of Forest Research, 134:89–97.10.1007/s10342-014-0835-1Search in Google Scholar

Gömöry, D., Longauer, R., Hlásny, T., Pacalaj, M., Strmeň, S., Krajmerová, D., 2012b: Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.). European Journal of Forest Research, 131:401–411.10.1007/s10342-011-0512-6Search in Google Scholar

Gömöry, D., Paule, L., Krajmerová, D., Romšáková, I., Longauer, R., 2012a: Admixture of genetic lineages of different glacial origin: a case study of Abies alba Mill. in the Carpathians. Plant Systematics and Evolution, 298:703–712.10.1007/s00606-011-0580-6Search in Google Scholar

Holliday, J. A., Zhou, L. C., Bawa, R., Zhang, M., Oubida, R. W., 2016: Evidence for extensive parallelism but divergent genomic architecture of adaptation along altitudinal and latitudinal gradients in Populus trichocarpa. New Phytologist, 209:1240–1251.10.1111/nph.1364326372471Search in Google Scholar

Huntley, B., Berry, P., Cramer, W., McDonald, A. P., 1995: Modelling present and potential future ranges of some European higher plants using climate response surfaces. Journal of Biogeography, 22:967–1001.10.2307/2845830Search in Google Scholar

IPCC, 2014: Climate Change 2014: Synthesis Report. In: Pachauri, R. K., Meyer, L. A. (eds.): Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, IPCC, 151 p.Search in Google Scholar

Iverson, L. R., Schwartz, M. W., Prasad, A. M., 2004: How fast and far might tree species migrate in the eastern United States due to climate change? Global Ecology and Biogeography, 13:209–219.10.1111/j.1466-822X.2004.00093.xSearch in Google Scholar

Jermstad, K. D., Bassoni, D. L., Wheeler, N. C., Anekonda, T. S., Aitken, S. N., Adams, W. T. et al., 2001: Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness. Theoretical and Applied Genetics, 102:1152–1158.10.1007/s001220000506Search in Google Scholar

Johnsen, Ø., Daehlen, O.G., Østreng, G., Skrøppa, T., 2005: Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytologist, 168:589–596.10.1111/j.1469-8137.2005.01538.x16313642Search in Google Scholar

Kapeller, S., Lexer, M.J., Geburek, T., Hiebl, J., Schueler, S., 2012: Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate. Forest Ecology and Management, 271:46–57.10.1016/j.foreco.2012.01.039Search in Google Scholar

Konnert, M., Fady, B., Gömöry, D., A´Hara, S., Wolter, F., Ducci, F. et al., 2015: Use and transfer of forest reproductive material in Europe in the context of climate change. European Forest Genetic Resources Programme (EUFORGEN). Rome, Bioversity International, 75 + xvi p.Search in Google Scholar

Kramer, K., Liesebach, M., Lorent, A., Ducousso, A., Gömöry, D., Hansen, J. et al., 2017: Chilling and forcing requirements for foliage bud burst of European beech (Fagus sylvatica L.) differ between provenances and are phenotypically plastic. Agricultural and Forest Meteorology, 234:172–184.10.1016/j.agrformet.2016.12.002Search in Google Scholar

Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R. et al., 2012: Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15:378–392.10.1111/j.1461-0248.2012.01746.x349037122372546Search in Google Scholar

Lefèvre, F., Boivin, T., Bontemps, A., Courbet, F., Davi, H., Durand-Gillmann, M. et al., 2014: Considering evolutionary processes in adaptive forestry. Annals of Forest Science, 71:723–739.10.1007/s13595-013-0272-1Search in Google Scholar

Lind, B. M., Menon, M., Bolte, C. E., Faske, T. M., Eckert, A. J., 2018: The genomics of local adaptation in trees: are we out of the woods yet? Tree Genetics and Genomes 14:art.29.10.1007/s11295-017-1224-ySearch in Google Scholar

Lindgren, D., Paule, L., Shen, X.-H., Yazdani, R., Segerström, U., Wallin, J. E. et al., 1995: Can viable pollen carry scots pine genes over long distances? Grana 34:64–69.10.1080/00173139509429035Search in Google Scholar

Lindtke, D., Buerkle, C. A., Barbara, T., Heinze, B., Castiglione, S., Bartha, D. et al., 2012: Recombinant hybrids retain heterozygosity at many loci: new insights into the genomics of reproductive isolation in Populus. Molecular Ecology, 21:5042–5058.10.1111/j.1365-294X.2012.05744.x22989336Search in Google Scholar

Matthews, J. D., 1989: Sylvicultural Systems. Oxford, Clarendon Press, 284 p.Search in Google Scholar

Mátyás, C., 1994: Modeling climate change effects with provenance test data. Tree Physiology, 14:797–804.10.1093/treephys/14.7-8-9.79714967649Search in Google Scholar

Mátyás, C., 1996: Climatic adaptation of trees: Rediscovering provenance tests. Euphytica, 92:45–5410.1007/BF00022827Search in Google Scholar

Mátyás, C., 2007. What do feld trials tell about the future use of forest reproductive material? In: Koskela, J., Buck, A., Teissier du Cros, E. (eds.): Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Rome, Bioversity International, p. 53–69.Search in Google Scholar

Messier, C., Bauhus, J., Doyon, F., Maure, F., Sousa-Silva, R., Noler, P. et al., 2019: The functional complex network approach to foster forest resilience to global changes. Forest Ecosystems, 6:art.21.10.1186/s40663-019-0166-2Search in Google Scholar

Montwe, D., Isaac-Renton, M., Hamann, A., Spiecker, H., 2018: Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nature Communications, 9:art.1574.10.1038/s41467-018-04039-5Search in Google Scholar

Neale, D. B., Kremer, A., 2011: Forest tree genomics: growing resources and applications. Nature Reviews Genetics, 12:111–122.10.1038/nrg2931Search in Google Scholar

Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U. et al., 2010: Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15:684–692.10.1016/j.tplants.2010.09.008Search in Google Scholar

O’Hara, K. L., 2016: What is close-to-nature silviculture in a changing world? Forestry 89:1–6.10.1093/forestry/cpv043Search in Google Scholar

Pigliucci, M., Murren, C. J., Schlichting, C. D., 2006: Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209:2362–2367.10.1242/jeb.02070Search in Google Scholar

Plomion, C., Bastien, C., Bogeat-Triboulot, M. B., Bouffier, L., Dejardin, A., Duplessis, S. et al., 2016: Forest tree genomics: 10 achievements from the past 10 years and future prospects. Annals of Forest Science, 73:77–103.10.1007/s13595-015-0488-3Search in Google Scholar

ProSilva, 2012: ProSilva principles. Available online at https://www.prosilva.org/fileadmin/prosilva/3_Close_to_Nature_Forestry/01_ProSilva_Principles/Pro_Silva_Principles_2012.pdf, accessed 10 April 2020.Search in Google Scholar

Puettmann, K. J., Coates, D., Messier, C., 2009 A critique of silviculture. Managing for complexity. Washington, Island Press, 189 p.Search in Google Scholar

Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L., Hamilton, D. A., 1999: Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecological Monographs, 69:375–407.10.1890/0012-9615(1999)069[0375:GRTCIP]2.0.CO;2Search in Google Scholar

Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., Moomaw, W. M., 2019: World scientists’ warning of a climate emergency. BioScience, 70:8–12.10.1093/biosci/biz088Search in Google Scholar

Savolainen, O., Pyhäjärvi, T., Knürr, T., 2007: Gene flow and local adaptation in trees. Annual Review of Ecology, Evolution and Systematics, 38:595–619.10.1146/annurev.ecolsys.38.091206.095646Search in Google Scholar

Schlichting, C. D., Smith, H., 2002: Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology, 16:189–211.10.1023/A:1019624425971Search in Google Scholar

Schütz, J.-P., Saniga, M., Diaci, J., Vrška, T., 2016: Comška, T., 2016: Com-ka, T., 2016: Comparing close-to-nature silviculture with processes in pristine forests: lessons from Central Europe. Annals of Forest Science, 73:911–921.10.1007/s13595-016-0579-9Search in Google Scholar

Silvestro, R., Rossi, S., Zhang, S. K., Froment, I., Huang, J. G., Saracino, A., 2019: From phenology to forest management: Ecotypes selection can avoid early or late frosts, but not both. Forest Ecology and Management, 436:21–26.10.1016/j.foreco.2019.01.005Search in Google Scholar

Skrøppa, T., 1994: Growth rhythm and hardiness of Picea abies progenies of high-altitude parents from seed produced at low elevations. Silvae Genetica, 43:95–100.Search in Google Scholar

Skrøppa, T., Tollefsrud, M. M., Sperisen, C., Johnsen, O., 2009: Rapid change in adaptive performance from one generation to the next in Picea abies – Central European trees in a Nordic environment. Tree Genetics and Genomes, 6:93–99.10.1007/s11295-009-0231-zSearch in Google Scholar

Smouse, P. E., Dyer, R. J., Westfall, R. D., Sork, V. L., 2001: Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution, 55:260–271.10.1111/j.0014-3820.2001.tb01291.x11308084Search in Google Scholar

Spathelf, P., Bolte, A., van der Maaten, E., 2015: Is Close-to-Nature Silviculture (CNS) an adequate concept to adapt forests to climate change. Landbauforschung, 65:161–170.Search in Google Scholar

Sthultz, C. M., Gehring, C. A., Whitham, T. G., 2009: Deadly combination of genes and drought: increased mortality of herbivore-resistant trees in a foundation species. Global Change Biology, 15:1949–1961.10.1111/j.1365-2486.2009.01901.xSearch in Google Scholar

St-Laurent, G. P., Hagerman, S., Kozak, R. 2018: What risks matter? Public views about assisted migration and other climate-adaptive reforestation strategies. Climatic Change, 151:573–587.Search in Google Scholar

Valladares, F., Sanchez-Gomez, D., Zavala, M. A., 2006: Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94:1103–1116.10.1111/j.1365-2745.2006.01176.xSearch in Google Scholar

Williams, M. I., Dumroese, R. K., 2013: Preparing for climate change: forestry and assisted migration. Journal of Forestry, 111:287–297.10.5849/jof.13-016Search in Google Scholar

Woodall, C. W., Oswalt, C. M., Westfall, J. A., Perry, C. H., Nelson, M. D., Finley, A. O., 2009: An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management, 257:1434–1444.10.1016/j.foreco.2008.12.013Search in Google Scholar

Wortemann, R., Herbette, S., Barigah, T. S., Fumanal, B., Alia, R., Ducousso, A. et al., 2011: Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiology, 31:1175–1182.10.1093/treephys/tpr10121989814Search in Google Scholar

eISSN:
0323-1046
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Plant Science, Ecology, other