INFORMAZIONI SU QUESTO ARTICOLO

Cita

Alcamo, J., Moreno, J. M., Nováky, B., Bindi, M., Corobov, R., Devoy, R. J. N. et al., 2007: Europe: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., Hanson, C. E. (eds.): Climate change. Cambridge University Press, Cambridge, p. 541–580.Search in Google Scholar

Anderson, K. J., Allen, A. P., Gillooly, J. F., Brown, J. H., 2006: Temperature-dependence of biomass accumulation rates during secondary succession. Ecology Letters, 9:673–682.10.1111/j.1461-0248.2006.00914.x16706912Search in Google Scholar

Ando, T., Chiba, K., Nishimura, T., Tanimoto, T., 1977: Temperate fir and hemlock forests in Shikoku. In: Primary productivity in Japanese forests. JIBP Synthesis. University of Tokyo Press, 16:213–245.Search in Google Scholar

Andriyanova, O. V., 2001: Peculiarities of biological cycle of chemical elements in spruce-fir forests at Mari-El republic: Ph. D. Thesis. Ioshkar-Ola, Technical University, 22 p.Search in Google Scholar

Barbu, I., Barbu, C., 2005: Silver fir (Abies Alba Mill.) in Romania. Campulung Moldovenesc, Editura Rechnica Silvica, 220 p.Search in Google Scholar

Baskerville, G. L., 1972: Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research, 2:49–53.10.1139/x72-009Search in Google Scholar

Bi, H., Turner, J., Lambert, M. J., 2004: Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees, 18:467–479.10.1007/s00468-004-0333-zSearch in Google Scholar

Bijak, S., 2010: Tree-ring chronology of silver fir and its dependence on climate of the Kaszubskie Lakeland (Northern Poland) Geochronometria, 35: 91–94.10.2478/v10003-010-0001-9Search in Google Scholar

Bohn, F. J., Huth, A., 2017: The importance of forest structure to biodiversity–productivity relationships. Royal Society Open Science, 4:160521.10.1098/rsos.160521531931628280550Search in Google Scholar

Bosela, M., Lukac, M., Castagneri, D., Sedmák, R., Biber, P., Carrer, P. et al., 2018: Contrasting effects of environmental change on the radial growth of cooccurring beech and fir trees across Europe. Science of the Total Environment, 615:1460–1469.10.1016/j.scitotenv.2017.09.09229055588Search in Google Scholar

Cantiani, M., 1974: Tavola di produttivita della biomassa arborea. In: Ricerche Sperimentale di Dendrometria e di Auxometria. Fascicolo V. Prime indagini sulla biomassa dell’ abete bianco. Instituto di Assestamento Forestale, Facolta di Agraria, Universita degli studi di Firenze, p. 41–57.Search in Google Scholar

Chernyshev, V. D., 1974: Pathways of physiological and energetic adaptations of conifers under extreme conditions. In: Biologicheskie problemy Severa: Tezisy VI Simp. (Biological Problems of the North: Abstr. VI Symp). Yakutsk: Inst. Biol., Yakutsk. Fil. Sib. Otd. Akad. Nauk SSSR, 5:13–17.Search in Google Scholar

Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M. et al., 2015: Mapping tree density at a global scale. Nature, 525:201–205.Search in Google Scholar

D’Aprile, F., Tapper, N., Marchetti, M., 2015: Forestry under climate change. Is time a tool for sustainable forest management? Open Journal of Forestry, 5:329–336.10.4236/ojf.2015.54028Search in Google Scholar

DeAngelis, D. L., Gardner, R. H., Shugart, H. H., 1981: Productivity of forest ecosystems studied during the IBP: The woodlands data set In: Reichle, D. E. (ed.). Dynamic properties of forest ecosystems. IBP-23. Cambridge, University Press, p. 567–672.Search in Google Scholar

DeLucia, E. H., Maherali, H., Carey, E. V., 2000: Climate-driven changes in biomass allocation in pines. Global Change Biology, 6:587–593.10.1046/j.1365-2486.2000.00338.xSearch in Google Scholar

Dong, L., Zhang, L., Li, F., 2015: A three-step proportional weighting system of nonlinear biomass equations. Forest Science, 61:35–45.10.5849/forsci.13-193Search in Google Scholar

Dong, L., Zhang, L., Li, F., 2016: Developing two additive biomass equations for three coniferous plantation species in Northeast China. Forests, 7:36.10.3390/f7070136Search in Google Scholar

Dylis, N. V., 1978: Fundamentals of biogeocenology. Moscow, Moscow State University Publ., 152 p.Search in Google Scholar

Dyukarev, V. N., Rozenberg, V. A., 1975: Above-ground phytomass of stands, ingrowth and bushwood in fir and spruce forests of Sikhote-Alin’ Mountain In: Proc. of Biology and Soil Institute, 136:30–50.Search in Google Scholar

Eggers, J., Lindner, M., Zudin, S., Zaehle, S., Liski, J., 2008: Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Global Change Biology, 14:2288–2303.10.1111/j.1365-2486.2008.01653.xSearch in Google Scholar

Fang, O., Yang Wang, Y., Shao, X., 2016: The effect of climate on the net primary productivity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years. Trees, 30:281–294.10.1007/s00468-015-1300-6Search in Google Scholar

Fatichi, S., Pappas, C., Zscheischler, J., Leuzinger, S., 2019: Modelling carbon sources and sinks in terrestrial vegetation. New Phytologist, 221:652–668.10.1111/nph.1545130339280Search in Google Scholar

Felton, A., Nilsson, U., Sonesson, J., Felton, A. M., Roberge, J.-M., Ranius, T. et al., 2016: Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio, 45 (Supplement 2):124–139.10.1007/s13280-015-0749-2470506526744048Search in Google Scholar

Fu, L., Lei, X., Hu, Z., Zeng, W., Tang, Sh., Marshall, P. et al., 2017: Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China. Annals of Forest Science, 74:1–15.10.1007/s13595-017-0636-zSearch in Google Scholar

Furuno, T., Kawanabe, S., 1967: Investigations on the productivity of Japanese fir (Abies firma Sieb. et Zucc.) and hemlock (Tsuga sieboldii Carr.) stands in Kyoto University Forest in Wakayama. I. On the growth of Japanese fir stands. Bulletin of Kyoto University Forest, 39:9–26.Search in Google Scholar

Furuno, T., Uenishi, S., Uenishi, K., 1979: Investigations on the productivity of Japanese fir (Abies firma Sieb. et Zucc.) and hemlock (Tsuga sieboldii Carr.) stands in Kyoto University Forest in Wakayama. V. Biomass of upperground parts and litterfall in fir-hemlock stands. Bulletin of Kyoto University Forest, 51:58–70.Search in Google Scholar

Golubyatnikov, L. L., Denisenko, E. A., 2009: Influence of climatic changes on the vegetation of European Russia. News of Russian Academy of Sciences. Geographic Series, 2:57–68.Search in Google Scholar

Han, S. H., Kim, S., Li, G., Chang, H., Yun, S. J., Jiae, A. J., Son, Y., 2018: Effects of warming and precipitation manipulation on fine root dynamics of Pinus densiflora Sieb. et Zucc. Seedlings. Forests, 9:141–12.10.3390/f9010014Search in Google Scholar

Hellrigl, B., 1974: Relazioni e tavole della biomassa arborea. In: Ricerche Sperimentale di Dendrometria e di Auxometria. Fascicolo V. Prime indagini sulla biomassa dell’abete bianco. Instituto di Assestamento Forestale, Facolta di Agraria, Universita degli studi di Firenze, Florence, p. 1–40.Search in Google Scholar

Henderson, M., 2006: Antarctic air is warming faster than rest of world. The Times, Avaiable at: <https://www.newsru.com/world/31mar2006/ant.html>Search in Google Scholar

Hultén, E., 1937: Outline of the history of arctic and boreal biota during the Quaternary Period. New York, Lehre J. Cramer, 248 p.Search in Google Scholar

Huston, M. A., Wolverton, S., 2009: The global distribution of net primary production: resolving the paradox. Ecological Monographs, 79:343–377.10.1890/08-0588.1Search in Google Scholar

Jacobs, M. W., Cunia, T., 1980: Use of dummy variables to harmonize tree biomass tables. Canadian Journal of Forest Research, 10:483–490.10.1139/x80-079Search in Google Scholar

Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F. et al., 2017: Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23:177–190.10.1111/gcb.13388684985227381364Search in Google Scholar

Keeling, H. C., Phillips, O. L., 2007: The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 16:618–631.10.1111/j.1466-8238.2007.00314.xSearch in Google Scholar

Khanbekov, R. I., 1972: Above-ground biomass quantity in dark-coniferous-leaved young forests at Ufimskoye Plateau (Short reports of conference for young scientists). Pushkino, VNIILM, 2:23–29.Search in Google Scholar

Kimura, M., 1963: Dynamics of vegetation in relation to soil development in northern Yatsugataki mountains. Japan. Journal of Botany, 8:255–287.Search in Google Scholar

Koshurnikova, N. N., 2007: Carbon budget in dark-coniferous forests of the southern taiga: Ph. D. Thesis. Krasnoyarsk, V. N. Sukachev Forest Institute, 20 p.Search in Google Scholar

Kozak, A., 1970: Methods of ensuring additivity of bio-mass components by regression analysis. Forestry Chronicle, 46:402–404.10.5558/tfc46402-5Search in Google Scholar

Krauklis, A. A., Strizhak, T. I., Toporkova, G. P., 1975: Phytomass quantity. In: Natural regimes and topogeo-systems of the taiga near Angara river. Novosibirsk, Nauka, p. 177–200.Search in Google Scholar

Kudyba, S. et al., 2014: Big Data, Mining, and Analytics. Components of Strategic Decision Making. Boca Raton, CRC Press, 288 p.10.1201/b16666Search in Google Scholar

Kurucz, J., 1969: Component weights of Douglas-fir, western hemlock, and western red cedar biomass for simulation of amount and distribution of forest fuels. University of British Columbia, Forestry Department, PhD thesis, 116 p.Search in Google Scholar

Kuzikov, I. E., 1979: Biomass change in fir forests of Hylocomiosum type in different climatic conditions of the Middle Siberia: Ph.D. thesis. Krasnoyarsk, Siberian Technological Institute, 24 p.Search in Google Scholar

Laiho, R., Prescott, C.E., 2004: Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Canadian Journal of Forest Research, 34:763–777.10.1139/x03-241Search in Google Scholar

Laing, J., Binyamin, J., 2013: Climate change effect on winter temperature and precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011. American Journal of Climate Change, 2:275–283.10.4236/ajcc.2013.24027Search in Google Scholar

Lakida, P. I., Domashovets, G. S., 2009: Biological productivity of L’vov region forests and its dynamics. Korsun’-Shevchenkovckii, FOP Maidachenko, I. S., 254 p.Search in Google Scholar

Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G. et al., 2016: Positive biodiversity-productivity relationship predominant in global forests. Science, 354:196–208.Search in Google Scholar

Liepa, I. Y, 1980: Dynamics of Wood Stock: Forecast and Ecology. Riga, Zinatne, 170 p.Search in Google Scholar

Lieth, H., 1974: Modeling the primary productivity of the world. International Section for Ecology Bulletin, 4:11–20.Search in Google Scholar

Lindner, M., Garcia-Gonzalo, J., Kolstrom, M., Green, T., Reguera, R., Maroschek, M. et al., 2008: Impcats of Climate Change on European Forests and Options for Adaptation. Joensuu, European Forestry Institute, 173 p.Search in Google Scholar

Lockers R., Knapen R., Janssen S., van Randen Y., Jansen J., 2016: Analysis of big data technologies for use in agro-environmental science. Environmental Modelling and Software, 84:494–504.10.1016/j.envsoft.2016.07.017Search in Google Scholar

Miao, Z., Li, C., 2011: Predicting tree growth dynamics of boreal forest in response to climate change. In: Li, C. et al. (eds.): Landscape Ecology in Forest Management and Conservation. Berlin, Heidelberg, Higher Education Press, Beijing and Springer-Verlag, p. 176–205.10.1007/978-3-642-12754-0_8Search in Google Scholar

Mitrofanov, D. P., Kasapenko, L. F., Lapitskaya, L. S., Pashennykh, O. K., 1986: Primary production of forest phytocoenoses at the Middle Yenisei river. In: Forest vegetation resouces of the Middle Siberia. Krasnoyarsk, V.N. Sukachev Forest Institute, p. 3–9.Search in Google Scholar

Ni, J., Zhang, X.-S., Scurlock, J. M. O., 2001: Synthesis and analysis of biomass and net primary productivity in Chinese forests. Annals of Forest Science, 58:351–384.10.1051/forest:2001131Search in Google Scholar

Odinak, Ya. P., Borsuk, D. V., Granatyr’, V. F. et al., 1986: Primary productivity of Fagus-Abies phytocoenoses on Beskidy Mountain. Forestry, Pulp and Wood Industry. Kiev, Budivelnik, 17:13–15.Search in Google Scholar

Onuchin, A. A., Borisov, A. N., 1983: Influence of dark-coniferous forests of Khamar-Daban Mountains on snow cover forming. In: Environmental role of Siberian forest ecosystems. Krasnoyarsk, V. N. Sukachev Institute, p. 95–105.Search in Google Scholar

Oohata, S., Oniishi, C., 1974: Some discussions on tree form and dry matter production of a fir stand at Tanohara on Mount Ontake. Bulletin of Kyoto University Forest, 46:51–57.Search in Google Scholar

Opritova, S. V., Glagolev, V. A., Rozenberg, V. A., 1982: On a possibility of estimating aboveground forest bio-mass using forest inventory data. In: Biogeocenological studies in forests of southern Sikhote-Alin’ Mountains. Vladivostok, Far-Eastern Scientific Center, p. 71–83.Search in Google Scholar

Orlov, A. Ya., 1951: Dark-coniferous forests of the Northern Caucasus. Moscow, Academy of Sciences USSR, 256 p.Search in Google Scholar

Oshima, Y., Kimura, M., Iwaki, H., Kuroiwa, S., 1958: Ecological and physiological studies on the vegetation of Mt. Shimagare. I. Preliminary survey of the vegetation of Mt. Shimagare. The Botanical magazine, Tokyo, 71:289–301.10.15281/jplantres1887.71.289Search in Google Scholar

Paquette, A., Vayreda, J., Coll, L., Messier, C., Retana J., 2018: Climate change could negate positive tree diversity effects on forest productivity: A study across five climate types in Spain and Canada. Ecosystems, 21:960–970.10.1007/s10021-017-0196-ySearch in Google Scholar

Parresol, B. R., 2001: Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, 31:865–878.10.1139/x00-202Search in Google Scholar

Picard, N., Saint-André, L., Henry, M., 2012: Manual for building tree volumeand biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, 215 p.Search in Google Scholar

Poorter, L. L., van der Sande, M. T., Thompson, J., Arets, E. J. M. M., Alarcón, A., Álvarez-Sánchez, J. et al., 2015: Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24:1314.10.1111/geb.12364Search in Google Scholar

Poudel, B. C., Sathre, R., Gustavsson, L., Bergh, J., Lundström, A., Hyvönen, R., 2011: Effects of climate change on biomass production and substitution in north-central Sweden. Biomass and Bioenergy, 35:4340–4355.10.1016/j.biombioe.2011.08.005Search in Google Scholar

Sanquetta, C. R., Behling, A., Corte1, A. P. D., Netto, S. P., Schikowski, A. B., do Amaral, M. K., 2015: Simultaneous estimation as alternative to independent modeling of tree biomass. Annals of Forest Science, 72:1099–1112.10.1007/s13595-015-0497-2Search in Google Scholar

Satoo, T., 1973: Materials for the studies of growth in forest stands. XI: Primary production relations in a young plantation of Abies sachalinensis in Hokkaido. Bulletin of Tokyo University Forests, 66:127–137. Savill, P., Wilson, S., McG., Mason, B., Jinks, R., 2016:Search in Google Scholar

Silver Firs (Abies spp) of Europe and the Near East. Species, silviculture and utilisation potential. Quarterly Journal of Forestry, p. 18–30.Search in Google Scholar

Schwarz, F., 1899: Physiologische Untersuchungen über Dickenwachstum und Holzqualität von Pinus silvestris. Berlin, P. Parey, 404 p.Search in Google Scholar

Shuman, J. K., Shugart, H. H., 2009: Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model. Environmental Research Letters, 4:1–7.10.1088/1748-9326/4/4/045024Search in Google Scholar

Stegen, J. C., Swenson, N. G., Enquist, B. J., White, E. P., Phillips, O. L., Jorgensen, P. M. et al., 2011: Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20:744–754.10.1111/j.1466-8238.2010.00645.xSearch in Google Scholar

Strömgren, M., Linder, S., 2002: Effects of nutrition and soil warming on stem wood production of a boreal Norway spruce stand. Global Change Biology, 8:1195–1204.10.1046/j.1365-2486.2002.00546.xSearch in Google Scholar

Šebeň, V., Konôpka, B., Pajtík, J., 2017: Quantifying carbon in dead and in living trees: a case study in young beech and spruce over 9 years. Central European Forestry Journal, 2–3:133–141.10.1515/forj-2017-0009Search in Google Scholar

Tadaki, Y., Sato, A., Sakurai, S., Takeuchi, I., Kawahara, T., 1977: Studies on the production structure of forest. XVII. Structure and primary production in subalpine “dead tree strips” Abies forest near Mount Asahi. Japan. Journal of Ecology, 27:83–90.Search in Google Scholar

Tolmachev, A. I., 1962: Osnovy ucheniya ob arealakh: Vvedenie v khorologiyu rasteniy (Fundamentals of Plant Habitat Theory: Introduction to Plant Community Chorology), Leningrad, State University Publishing, 100 p.Search in Google Scholar

Toromani, E. i Bojaxhi, F., 2010: Growth Response of Silver Fir and Bosnian Pine from Kosovo. South-East European Forestry, 1:20–27.10.15177/seefor.10-03Search in Google Scholar

Ueda, S., 1974: Investigation on the nutrients circulation in the mixed natural forest of Todo-matsu (Abies sachalinensis Mast.) and broadleaved trees. Bulletin of Kyoto University Forests, 46:23–39.Search in Google Scholar

Usoltsev, V. A., 2004: On the application of regression analysis in forestry problems. Lesnaya Taksatsiya i Lesoustroistvo, 1:49–55.Search in Google Scholar

Usoltsev, V. A., 2007: Some methodological and conceptual uncertainties in estimating the income component of the forest carbon cycle. Russian Journal of Ecology, 38:11–10.10.1134/S1067413607010018Search in Google Scholar

Usoltsev, V. A., 2010: Eurasian forest biomass and primary production data. Yekaterinburg, Ural Branch of Russian Academy of Sciences, 570 p.Search in Google Scholar

Usoltsev, V. A., 2013: Forest biomass and primary production database for Eurasia: CD-version. The second ed., enlarged and re-harmonized. Yekaterinburg, Ural State Forest Engineering University.Search in Google Scholar

Usoltsev, V. A., 2018: In basements of the biosphere: What we know about the primary production of tree roots? Eko-Potencial, 24:24–77.Search in Google Scholar

Usoltsev, V. A., Antropov, A. I., 2001: Biomass yield tables for fir forests of Altai-Sayany Mountain Province. Ural Forests and their Management, 21:159–170.Search in Google Scholar

Usoltsev, V. A., Vorobeichik, E. L., Bergman, I. E., 2012: Biological productivity of Ural forests under conditions of air pollutions: studying a system of regularities. Yekaterinburg, Ural State Forest Engineering University, 366 p.Search in Google Scholar

Usoltsev, V. A., Shobairi, S. O. R., Chasovskikh, V. P., 2019a: Modeling the additive stand biomass of Larix spp. for Eurasia. Ecological Questions, 30:35–46.10.12775/EQ.2019.012Search in Google Scholar

Usoltsev, V. A., Shobairi, S. O. R., Tsepordey, I. S., Chasovskikh, V. P., 2019b: Modelling forest stand biomass and net primary production with the focus on additive models sensitive to climate variables for two-needled pines in Eurasia. Journal of Climate Change, 5:41–49.10.3233/JCC190005Search in Google Scholar

Veselov, I. V., 1973: Mixed fir and beech forests at the Northern Caucasus and their biological productivity. Krasnodar, Book Publ. House, 211 p.Search in Google Scholar

Vyskot, M., 1972: Aerial biomass of silver fir (Abies alba Mill.). Acta Universitatis Agriculturae (Brno), Series C, 41:243–294.Search in Google Scholar

Vyskot, M., 1973: Root biomass of silver fir (Abies alba Mill.). Acta Universitatis Agriculturae (Brno), Series C, 42:215–261.Search in Google Scholar

Wilmking, M., Juday, G. P., Barber, V. A., Zald, H. S. J., 2004: Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology, 10:1724–1736.10.1111/j.1365-2486.2004.00826.xSearch in Google Scholar

World Weather Maps, 2007. (URL: https://www.mapsofworld.com/referrals/weather/).Search in Google Scholar

Yamamoto, T., Sanada, E., 1970: Nutrients uptake by planted Todo-fir (Abies sachalinensis Mast.), nutrient circulation and a change of soil in forest land. Bull. Government. Forest Experimetal. Station of Tokyo, 229:93–121.Search in Google Scholar

Yoda, K., 1967: A preliminary survey of the forest vegetation of eastern Nepal. II. General description, structure and floristic composition of the sample plots chosen from different vegetation zones. Journal of the College of Arts and Sciences. Chiba University, 5:99–140.Search in Google Scholar

Yoda, K., 1968: A preliminary survey of the forest vegetation of eastern Nepal. III. Plant biomass in the sample plots chosen from different vegetation zones. Journal of the College of Arts and Sciences, Chiba University, 5:277–302.Search in Google Scholar

Young, H. E., Strand, L., Altenberger, R., 1964: Preliminary fresh and dry weight tables for seven tree species in Maine. Maine Agricultural Experiment Station, Technical Bulletin 12, 76 p.Search in Google Scholar

Zeller L., Liang J., Pretzsch H., 2018: Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America. Ecosystems, 5:4.10.1186/s40663-017-0127-6Search in Google Scholar

Zheng, C., Mason, E. G., Jia, L., Wei, S., Sun, C., Duan, J., 2015: A single-tree additive biomass model of Quercus variabilis Blume forests in North China. Trees, 29, 3:705–716.10.1007/s00468-014-1148-1Search in Google Scholar

Zeng, W. S., Duo, H. R., Lei, X. D., Chen, X. Y., Wang, X. J., Pu, Y., Zou, W. T., 2017: Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. European Journal of Forest Research, 136:233–249.10.1007/s10342-017-1024-9Search in Google Scholar

eISSN:
0323-1046
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Plant Science, Ecology, other