Accesso libero

Seasonal flight activity and the length of the generation period of selected Noctuidae (Lepidoptera) –extent and causes of variation

, , , , , , ,  e   
23 lug 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Altermatt, F., 2012. Temperature-related shifts in butterfly phenology depend on the habitat. Global Change Biology, 18: 2429–2438. https://doi.org/10.1111/j.1365-2486.2012.02727.x Search in Google Scholar

Ayre, G.L., Lamb, R.J., 1990. Life histories, flight patterns, and relative abundance of 9 cutworms (Lepidoptera, Noctuidae) in Manitoba. Canadian Entomologist, 122: 1059–1070. Search in Google Scholar

Ayres, M.P., Scriber, J.M., 1994. Local adaptation to regional climates in Papilio canadensis (Lepidoptera, Papilionidae). Ecological Monographs, 64: 465–482. https://doi.org/10.2307/2937146 Search in Google Scholar

Bardoloi, S., Hazarika, L.K., 1994. Body temperature and thermoregulation of Antherea assama larvae. Entomologia Experimentalis et Applicata, 72: 207–217. https://doi.org/10.1111/j.1570-7458.1994.tb01820.x Search in Google Scholar

Beck, S.D., 1968. Insect photoperiodism. New York and London: Academic Press. 288 p. Search in Google Scholar

Bryant, S.R., Bale, J.S., Thomas, C.D., 1998. Modification of the triangle method of degree-day accumulation to allow for behavioural thermoregulation in insects. Journal of Applied Ecology, 35: 921–927. Search in Google Scholar

Bues, R., Poitout, S., 1980. Study of larval and pupal development of Phlogophora meticulosa L. (Lep. Noctuidae) under different temperatures and photoperiods. Acta Oecologica-Oecologia Applicata, 1: 127–138. Search in Google Scholar

Danilevskii, A.S., 1965. Photoperiodism and seasonal development of insects. Edinburgh and London: Oliver & Boyd. 283 p. Search in Google Scholar

Degut, A., Fischer, K., Quque, M., Criscuolo, F., Michalik, P., Beaulieu, M., 2022. Irreversible impact of early thermal conditions: an integrative study of developmental plasticity linked to mobility in a butterfly species. Journal of Experimental Biology, 225: jeb243724. https://doi.org/10.1242/jeb.243724 Search in Google Scholar

Devetak, M., Bohinc, T., Kac, K., Trdan S., 2014. Seasonal dynamics of the cabbage armyworm (Mamestra brassicae [L.]) and the bright-line brown-eyes moth (Mamestra oleracea [L.]) in Slovenia. Journal of Horticultural Science, 41: 80–88. DOI: 10.17221/209/2013-HORTSCI Search in Google Scholar

Duraimurugan, P., 2018. Effect of weather parameters on the seasonal dynamics of tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae) in castor in Telangana State. Journal of Agrometeorology, 20: 139–143. https://doi.org/10.54386/jam.v20i2.526 Search in Google Scholar

Fazekas, J., Kadar, F., Sarospataki, M., Lövei, G.L., 1997. Seasonal activity, age structure and egg production of the ground beetle Anisodactylus signatus (Caleoptera: Carabidae) in Hungary. European Journal of Entomology, 94: 473–484. Search in Google Scholar

Frears, S.L., Chown, S.L., Webb, P.I., 1997. Behavioural thermoregulation in the mopane worm (Lepidoptera). Journal of Thermal Biology, 22: 325–330. https://doi.org/10.1016/S0306-4565(97)00029-6 Search in Google Scholar

Guo, J.L., Fu, X.W., Zhao, S.Y., Shen, X.J., Wyckhuys, K.A.G., Wu, K.M., 2020. Long-term shifts in abundance of (migratory) crop-feeding and beneficial insect species in northeastern Asia. Journal of Agrometeorology, 93: 583–594. https://doi.org/10.1007/s10340-019-01191-9 Search in Google Scholar

Hill, G.M., Kawahara, A.Y., Daniels, J.C., Bateman, C.C., Scheffers, B.R., 2021. Climate change effects on animal ecology: butterflies and moths as a case study. Biological Reviews, 96: 2113–2126. https://doi.org/10.1111/brv.12746 Search in Google Scholar

Honek, A., 1996. The relationship between thermal constants for insect development: a verification. Acta Societatis Zoologicae Bohemicae, 60: 115–152. Search in Google Scholar

Honek, A., Kocourek, F., 1990. Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbücher Abteilung für Systematik, Ökologie und Geographie der Tiere, 117: 401–439. Search in Google Scholar

Honek, A., Martinkova, Z., Lukas, J., Dixon, A.F.G., 2014. Plasticity of the thermal requirements of exotherms and adaptation to environmental conditions. Ecology and Evolution, 4: 3103–3112. https://doi.org/10.1002/ece3.1170 Search in Google Scholar

Honek, A., Novak, I., Martinkova, Z., Saska, P., Kulfan, J., Holecova, M., Jauschova, T., Zach, P., 2023. Trophic ecology drives annual variation in abundance of aphidophagous (Coccinellidae, Coleoptera and Chrysopidae, Neuroptera) and phytophagous (Noctuidae, Lepidoptera) insects: evidence from light traps. Annals of the Entomo-logical Society of America, 116: 125–140. https://doi.org/10.1093/aesa/saad002 Search in Google Scholar

Hrubesova, V., Sefrova, H., Lastuvka, Z., 2023. The importance of local faunal research for plant protection: an example from an agricultural landscape in central Europe. Plant Protection Science, 59: 348–355. DOI: 10.17221/33/2023-PPS Search in Google Scholar

Jarosik, V., Honek, A., Magarey, R.D., Skuhrovec, J., 2011. Developmental database for phenology models: related insect and mite species have similar thermal requirements. Journal of Economic Entomology, 104: 1870–1876. https://doi.org/10.1603/EC11247 Search in Google Scholar

Keszthelyi, S., Nowinszky, L., Szeoke, K., 2016. Different catching series from light and pheromone trapping of Helicoverpa armigera (Lepidoptera: Noctuidae). Biologia, 7: 818–823. https://doi.org/10.1515/biolog-2016-0094 Search in Google Scholar

Kitajima, H., Sakata, H., Kunitomo, S., Kawashima, Y.,2016. Effects of temperature on the development of Diomea cremata (Lepidoptera, Noctuidae). Japanese Journal of Applied Entomology and Zoology, 60: 205–209. Search in Google Scholar

Koch, M., 1988. Wir bestimmen Schmetterlinge [Identifying butterflies]. Leipzig and Radebeul: Neumann Verlag. 792 p. (In German). Search in Google Scholar

Larsen, E.A., Belitz, M.W., Guralnick, R.P., Ries, L., 2022. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Scientific Reports, 12: 1337.0. https://doi.org/10.1038/s41598-022-16104-7 Search in Google Scholar

Lee, K.P., Roh, C., 2010. Temperature-by-nutrient interactions affecting growth rate in an insect ectotherm. Entomologia Experimentalis et Applicata, 136: 151–163. https://doi.org/10.1111/j.1570-7458.2010.01018.x Search in Google Scholar

Lees, A.D., 1955. The physiology of diapause in arthropods. Cambridge Monographs in Experimental Biology, No. 4. Cambridge University Press. 151 p. Search in Google Scholar

May, M.L., 1979. Insect thermoregulation. Annual Review of Entomology, 24: 313–349. Search in Google Scholar

Merckx, T., Slade, E.M., 2014. Macro-moth families differ in their attraction to light: implications for light trap monitoring programmes. Insect Conservation and Diversity, 7: 453–461. https://doi.org/10.1111/icad.12068 Search in Google Scholar

Meszaros, Z., Madaras, K.M., Herczig, B., 1979. Population dynamics of noctuids in Hungary. I. Scotia segetum Schiff., S. exclamationis L., Amathes c-nigrum L. Acta Zoologica Academiae Scientiarum Hungaricae, 14: 493–501. Search in Google Scholar

Moon, H.C., Choi, M.K., Jang, S.J., Jang, H.L., Kim, J.H., Chon, H.G., 2022. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Korean Journal of Applied Entomology, 61: 349–356. Search in Google Scholar

Moore, M.E., Alston, M.A., Kingsolver, J.G., 2023. Behavioral thermoregulation of caterpillars is altered by temperature, but not parasitism: an empirical field study. Ecosphere, 14: e4578. DOI: 10.1002/ecs2.4578 Search in Google Scholar

Novák, I., 1983. An efficient light-trap for catching insects. Acta Entomologica Bohemoslovaca, 80: 29–34. Search in Google Scholar

Nowinszky, L. (ed.), 2008. Light trapping and the moon. Szombathely: Savaria University Press. 170 p. Search in Google Scholar

Raimondo, S., Strazanac, J.S., Butler, L., 2004. Comparison of sampling techniques used in studying Lepidoptera population dynamics. Environmental Entomology, 33: 418–425. https://doi.org/10.1603/0046-225X-33.2.418 Search in Google Scholar

Régnier, B., Legrand, J., Rebaudo, F., 2022. Modeling temperature-dependent development rate in insects and implications of experimental design. Environmental Entomology, 51: 132–144. Search in Google Scholar

Saunders, D., 2020. Insect photoperiodism: Seasonal development on a revolving planet. European Journal of Entomology, 117: 328–342. DOI: 10.14411/eje.2020.038 Search in Google Scholar

Sharma, S., Kooner, R., Sandhu, S.S., Arora, R., Kaur, T., Kaur, S., 2017. Seasonal dynamics of insect pests of sugar beet under subtropical conditions. Journal of Agro-meteorology, 19: 81–83. Search in Google Scholar

Spitzer, K., Lepš, J., 1988. Determinants in temporal variation in moth abundance. Oikos, 53: 31–36. https://doi.org/10.2307/356565 Search in Google Scholar

Spitzer, K., Rejmanek, M., Soldán, T., 1984. The fecundity and long term variability in abundance of noctuid moths (Lepidoptera, Noctuidae). Oecologia, 62: 91–93. Search in Google Scholar

Spuler, A., 1908. Die Schmetterlinge Europas [Butterflies of Europa]. Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung (E. Nägele). 385 p. (In German). Search in Google Scholar

SYSTAT SOFTWARE Inc, 2006. SigmaStat 3.5 for Windows. Point Richmond, CA: Systat Software Inc. 844 p. Search in Google Scholar

Tauber, M.J., Tauber, C.A., Masaki, S., 1986. Seasonal adaptations of insects. Oxford, New York: Oxford University Press. 411 p. Search in Google Scholar

Taylor, L.R., French, R.S., 1974. Effect of light trap design and illumination on samples of moths in an English woodland. Bulletin of Entomological Research, 63: 583–594. Search in Google Scholar

Trudgill, D.L., Honek, A., Li, D., Van Straalen, N.M., 2005. Thermal time –concepts and utility. Annals of Applied Biology, 146: 1–14. https://doi.org/10.1111/j.1744-7348.2005.04088.x Search in Google Scholar

Tsutsui, H., Hayakawa, H., 1991. Forecasting adult emergence and abundance of spotted cutworm, Xestia c-nigrum in the Tokachi District of Hokkaido. Japanese Journal of Applied Entomology and Zoology, 35: 189–195. Search in Google Scholar

Wigglesworth, V.B., 1939. The principles of insect physiology. New York: E. P. Dutton Inc. 434 p. Search in Google Scholar

Williams, C.B., 1939. An analysis of four years captures of insects in a light trap. Part I. General survey; sex proportion; phenology; and time of flight. Transactions of the Royal Entomological Society of London, 89: 79–131. https://doi.org/10.1111/j.1365-2311.1939.tb00738.x Search in Google Scholar

Wölfling, M., Becker, M.C., Uhl, B., Traub, A., Fiedler, K., 2016. How differences in the setting behaviour of moths (Lepidoptera) may contribute to sampling bias when using automated light traps. European Journal of Entomology, 113: 502–506. DOI: 10.14411/eje.2016.066 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Scienze biologiche, Botanica, Zoologia, Ecologia, Scienze della vita, altro