[
Adis, J., Minelli, A., De Morais, J. W., Pereira, L.A., Barbieri, F., Rodrigues, J.M.G., 1996. On abundance and phenology of Geophilomorpha (Chilopoda) from Cen tral Amazonian upland forests. Ecotropica, 2: 165–175.
]Search in Google Scholar
[
Anderson, J.M., Ingram, J.S., 1993. Tropical soil biology and fertility: A handbook of methods. 2nd edition Wall-ingford, UK: C.A.B. International. 221 p.
]Search in Google Scholar
[
Balan, D., Sureshan, P.M., 2017. Influence of seasonal and edaphic factors on the diversity of Scolopendromorph centipedes (Chilopoda: Scolopendromorpha) and general observations on their ecology from Kerala, India. Journal of Threatened Taxa, 9 (7): 10386–10395. http://dx.doi.org/10.11609/jott.3000.9.7.10386-10395
]Search in Google Scholar
[
Bardgett, R.D., Bowman, W.D., Kaufmann, R., Schmidt, S.K., 2005. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20 (11): 634–641. https://doi.org/10.1016/j.tree.2005.08.005
]Search in Google Scholar
[
Bartz, M.L.C., Pasini, A., Brown, G.G., 2013. Earthworms as soil quality indicators in Brazilian no-tillage systems. Applied Soil Ecology, 69: 39–48. https://doi.org/10.1016/j.apsoil.2013.01.011
]Search in Google Scholar
[
Blackburn, J., Farrow, M., Arthur, W., 2002. Factors influencing the distribution, abundance and diversity of geophilomorph and lithobiomorph centipedes. Journal of Zoology, 256 (2): 221–232. https://doi.org/10.1017/S0952836902000262
]Search in Google Scholar
[
Bonato, L., Chagas Junior, A., Dioguardi, R., Edgecombe, G.D., Lewis, J.G., Minelli, A., Pereira, L.A., Shelley, R.M., Stoev, P., Uliana, M., Zapparoli, M., 2016. Chilo-Base 2.0.: A world catalogue of Centipedes (Chilopoda). [cit. 2024-09-20]. https://chilobase.biologia.unipd.it/
]Search in Google Scholar
[
Bonato, L., Iorio, É., Minelli, A., 2011. The centipede genus Clinopodes C. L. Koch, 1847 (Chilopoda, Geophilomorpha, Geophilidae): reassessment of species diversity and distribution, with a new species from the Maritime Alps (France). Zoosystema, 33 (2): 175–205. https://doi.org/10.5252/z2011n2a3
]Search in Google Scholar
[
Bonato, L., Minelli, A., 2004. The centipede genus Mecistocephalus Newport 1843 in the Indian peninsula (Chilopoda Geophilomorpha Mecistocephalidae). Tropical Zoology, 17 (1): 15–63. https://doi.org/10.1080/03946975.2004.10531198
]Search in Google Scholar
[
Bonato, L., Minelli, A., Zapparoli, M., 2018. Centipede communities (Chilopoda) of forest soils across Europe: abundance, species richness and species composition. Atti Accademia Nazionale Italiana di Entomologia, 65: 113–120.
]Search in Google Scholar
[
Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59 (1): 39–46. http://dx.doi.org/10.1097/00010694-194501000-00006
]Search in Google Scholar
[
Damasiewicz, A., Leśniewska, M., 2020. Tygarrup javanicus (Chilopoda, Geophilomorpha) – an exotic species that has reached Poland. Polish Journal of Entomology, 89 (1): 52–58. http://dx.doi.org/10.5604/01.3001.0014.0300
]Search in Google Scholar
[
Druce, D., 2000. Factors affecting millipede, centipede and scorpion diversity in a savanna environment. M.Sc. thesis. University of KwaZulu–Natal, Durban, South Africa. [cited 2024-08-26]. http://hdl.handle.net/10413/4153
]Search in Google Scholar
[
Eason, E.H., 1964. Centipedes of the British Isles. London & New York: Warne. 294 p.
]Search in Google Scholar
[
Eason, H.E., 1992. On the taxonomy and geographical distribution of the Lithobiomorpha. Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck, Suppl. 10: 1–9.
]Search in Google Scholar
[
Edgecombe, G.D., 2001. Revision of Paralamyctes (Chilopoda: Lithobiomorpha: Henicopidae), with six new spe cies from Eastern Australia. Records of the Australian Museum, 53: 201–241.
]Search in Google Scholar
[
Geissen, V., Gehrmann, J., Genssler, L., 2007. Relationships between soil properties and feeding activity of soil fauna in acid forest soils. Journal of Plant Nutrition and Soil Science, 170 (5): 632–639. https://doi.org/10.1002/jpln.200625050
]Search in Google Scholar
[
Ion, C.M, Murariu, D.T., 2023. Studies on centipede ecology (Myriapoda: Chilopoda) a bibliometric review. Current Trends in Natural Sciences, 12 (23): 68–77. https://doi.org/10.47068/ctns.2023.v12i23.009
]Search in Google Scholar
[
Ivask, M., Kuu, A., Meriste, M., Kutti, S., Raamets, J. Palo, A., 2019. Chilopoda and Diplopoda of semi natural flooded meadows in Matsalu, Estonia. Pedobiologia, 74: 24–33. https://doi.org/10.1016/j.pedobi.2019.02.002
]Search in Google Scholar
[
Jackson, M.L., 1962. Soil chemical analysis. 1st. edition. London: Constable and company Ltd. 521 p.
]Search in Google Scholar
[
Ke, X., Yang, Y., Yin, W.Y., Xue, L., 2004. Effects of low pH environment on the collembolan Onychiurus yaodai. Pedobiologia, 48 (5–6): 545–550. https://doi.org/10.1016/j.pedobi.2004.07.001
]Search in Google Scholar
[
Klarner, B., Winkelmann, H., Krashevska, V., Maraun, M., Widyastuti, R., Scheu, S., 2017. Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia). PloS One, 12 (8): e0180915. https://doi.org/10.1371/journal.pone.0180915
]Search in Google Scholar
[
Kula, E., Lazorik, M., 2016. Centipedes, millipedes, terrestrial isopods and their relationships to physical and chemical properties of forest soils. Entomologica Fennica, 27 (1): 33–51. https://doi.org/10.33338/ef.84657
]Search in Google Scholar
[
Lin, H.H., Wiegand, T.J., 2014. Centipedes. In Wexler, P. (ed.). Encyclopedia of toxicology. 3rd edition. London: Academic Press, p. 766–767. https://doi.org/10.1016/B978-0-12-386454-3.00707-7
]Search in Google Scholar
[
Magnolini, R., Bonato, L., 2023. Soil centipedes (Chilopoda, Geophilomorpha) in the Val Camonica forests (Southern Alps): Species composition and richness. Biodiversity Data Journal, 11: 103153. https://doi.org/10.3897/BDJ.11.e103153
]Search in Google Scholar
[
Minelli, A., Golovatch, S.I., 2013. Myriapods. In Levin, S.A. (ed.). Encyclopedia of biodiversity. Vol. 5. 2nd edition. Waltham: Academic Press, p. 421–432. https://doi.org/10.3897/biorisk.4.51
]Search in Google Scholar
[
Petersen, H., Luxton, M., 1982. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39 (3): 288–388. https://doi.org/10.2307/3544689
]Search in Google Scholar
[
Rathore, A.C., Singh, C., Jayaprakash, J., Gupta, A.K., Doharey, V.K., Jinger, D., Singh, D., Yadav, D., Barh, A., Islam, S., Ghosh, A., 2023. Impact of conservation practices on soil quality and ecosystem services under diverse horticulture land use system. Frontiers in Forests and Global Change, 6: 1289325. https://doi.org/10.3389/ffgc.2023.1289325
]Search in Google Scholar
[
Santhanam, R., Velayutham, P., Jegatheesan, G., 1989. A manual of freshwater ecology. Delhi, India: Daya Publishing House. 109 p.
]Search in Google Scholar
[
Shinohara, K., 1965. A new species of Chilopoda from Himalaya. Journal of the College of Arts and Science, Chiba University, Natural Science Series, 4: 303–306.
]Search in Google Scholar
[
Singh, J., Cameron, E., Reitz, T., Schädler, M., Eisenhauer, N., 2020a. Grassland management effects on earthworm communitiesunder ambient and future climatic conditions. European Journal of Soil Science, 72: 343–355. http://dx.doi.org/10.1111/ejss.12942
]Search in Google Scholar
[
Singh, S., Sharma, A., Khajuria, K., Singh, J., Vig, A.P., 2020b. Soil properties changes earthworm diversity indices in different agro ecosystem. BMC Ecology, 20: 27. https://doi.org/10.1186/s12898-020-00296-5
]Search in Google Scholar
[
Srinivasdan, U., Tamma, K., Ramakrishnan, U., 2014. Past climate and species ecology drive nested species richness patterns along an east-west axis in the Himalaya. Global Ecology and Biogeography, 23 (1): 52–60. https://doi.org/10.1111/geb.12082
]Search in Google Scholar
[
Stanford, S., English, L., 1949. Use of flame photometer in rapid soil test of K and Ca. Journal of Agronomy, 41: 446–447.
]Search in Google Scholar
[
Sureshan, P.M., 2024. Fauna of India Checklist: Arthropoda: Myriapoda: Chilopoda. Version 1.0. Kozhikode, Kerala, India: Zoological Survey India, p. 1–7. https://doi.org/10.26515/Fauna/1/2023/Arthropoda:Myriapoda:Chilopoda
]Search in Google Scholar
[
Swift, M., Bignell, D., 2001. Standard methods for assessment of soil biodiversity and land use practice. Bogor, Indonesia: ICRAF. 40 p.
]Search in Google Scholar
[
Tuf, I.H., Mock, A., Dvořák, L., 2018. An exotic species spreads through Europe: Tygarrup javanicus (Chilopoda: Geophilomorpha: Mecistocephalidae) is reported from the Slovakia and the Czech Republic. Journal of Asia-Pacific Entomology, 21 (2): 560–562. https://doi.org/10.1016/j.aspen.2018.03.004
]Search in Google Scholar
[
Valdez, A.S., Bosch-Serra, À.D., Yagüe, M.R., Poch, R.M., Puigpinós, E., 2020. Earthworm community and soil microstructure changes with long-term organic fertilization. Archives of Agronomy and Soil Science, 66 (7): 957–70. https://doi.org/10.1080/03650340.2019.1648792
]Search in Google Scholar
[
Voigtländer, K., 2011. 15 Chilopoda – Ecology. In Treatise on zoology – anatomy, taxonomy, biology. The Myriapoda, Vol. 1 . Leiden: Brill, p. 309–325.
]Search in Google Scholar
[
Vos, H.M.J., Zweig, R., Margenot, A.J., Koopmans, G.F., Van Groenigen, J.W., 2023. Phosphatase activity in the drilosphere and its link to phosphorus uptake by grass. Geoderma, 439: 1–9. https://doi.org/10.1016/j.geoderma.2023.116690
]Search in Google Scholar
[
Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37 (1): 29–38. http://dx.doi.org/10.1097/00010694-193401000-00003
]Search in Google Scholar
[
Zhang, Y., Tian, L., 2021. Dynamic changes in moisture content and applicability analysis of a typical litter prediction model in Yunnan Province. PeerJ, 9: e12206. https://doi.org/10.7717/peerj.12206
]Search in Google Scholar