[
Allain, K.L., Zavada, M.S., Matthews, G.D., 1999. The reproductive biology of Magnolia grandiflora. Rhodora, 101: 143–162.
]Search in Google Scholar
[
Alm, J., Ohnmeiss, T.E., Lanza, J., Vriesenga, L., 1990. Preference of cabbage white butterflies and honeybees for nectar that contains amino acids. Oecologia, 84: 53–57. https://doi.org/10.1007/BF00665594
]Search in Google Scholar
[
Arber, E.A.N., Parkin, J., 1907. On the origin of angiosperms. Journal of the Linnean Society Botany, 38: 29–80.
]Search in Google Scholar
[
Arnanson, J.T., Philogène, B.J.R., Duval, F., Mclachlan, D., Picman, A.K., Towers, G.H.N.,Balza, F., 1985. Effects of sesquiterpene lactones on development of Aedes atropalpus and relation to partition coefficient. Journal of Natural Products, 48: 581–584.
]Search in Google Scholar
[
Becker, A., Alix, K., Damerval, C., 2011. The evolution of flower development: Current understanding and future challenges. Annals of Botany, 107: 1427–1431. https://doi.org/10.1093/aob/mcr122
]Search in Google Scholar
[
Byerley, M., 2006. Patterns and consequences of floral formula variation in Phlox (Polemoniaceae). PhD thesis. Colorado State University.
]Search in Google Scholar
[
Borg-Karlson, A.K., Groth, I., Agren, L., Kullenberg, B., 1993. Form-specific fragrances from Ophrys insectifera L. (Orchidaceae) attract species of different pollinator genera: evidence of sympatric speciation? Chemoecology, 4: 39–45. https://doi.org/10.1007/BF01245895
]Search in Google Scholar
[
Canright, J.E., 1952. The comparative morphology and relations of the Magnoliaceae. I. Trends of specialization in the stamens. American Journal of Botany, 39: 484–497.
]Search in Google Scholar
[
Carrington, M.E., Gottfried, T.D., Mullahey, J.J., 2003. Pollination biology of saw palmetto (Serenoarepens) in southwestern Florida. Palms, 47: 95–103.
]Search in Google Scholar
[
Cicuzza, D., Newton, A., Oldfield, S., 2007. The Red List of Magnoliaceae. Cambridge: Lavenham Press.
]Search in Google Scholar
[
Citerne, H., Jabbour, F., Nadot, S., Damerval, C., 2010. The evolution of floral symmetry. Advances in Botanical Research, 54: 85–137. https://doi.org/10.1016/S0065-2296(10)54003-5
]Search in Google Scholar
[
Cronquist, A., 1981. An integrated system of classification of flowering plants. New York: Columbia University Press, NY. 1262 p.
]Search in Google Scholar
[
Datta, S., Saxena, D.B., 1997. Parthenin and azadirachtin-A as antifeedants against Spodoptera litura (Fab). Pesticide Research Journal, 9: 263–266. https://doi.org/10.1016/S0065-2296(10)54003-5
]Search in Google Scholar
[
Di Sotto, A., Do Giacomo, S., Abete, L., Božović, M., Parisi, O.A., Barile, F., Vitalone, A.,Izzo, A.A., Ragno, R., MazzantiA, G., 2017. Genotoxicity assessment of piperitenoneoxide: an in vitro and in silico evaluation. Food and Chemical Toxicology, 106: 506–513. https://doi.org/10.1016/j.fct.2017.06.021
]Search in Google Scholar
[
Dieringer, G., Espinosa, S.J.E., 1994. Reproductive ecology of Magnolia schiedeana (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico. Torrey Botanical Society, 121: 154–159. https://doi.org/10.2307/2997167
]Search in Google Scholar
[
Dudareva, N., Klempien, A., Muhlemann, J.K., Kaplan, I., 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198: 16–32. https://doi.org/10.1111/nph.12145
]Search in Google Scholar
[
Elle, E., Carney, R., 2003. Reproductive assurance varies with flower size in Collinsia parviflora (Scrophulariaceae). American Journal of Botany, 90: 888–896. https://doi.org/10.3732/ajb.90.6.888
]Search in Google Scholar
[
Endress, P.K., 2010. The evolution of floral biology in basal angiosperms. Philosophical Transactions of the Royal Society, 365: 411–421. https://doi.org/10.1098/rstb.2009.0228
]Search in Google Scholar
[
Faegri, K., Van Der Pijl, L., 1979. The principles of pollination ecology. 3rd ed. Oxford: Pergamon Press. 248 p.
]Search in Google Scholar
[
Firmage, D.H., Cole, F.R., 1988. Reproductive success and inflorescence size of Calopogon tuberosus (Orchidaceae). American Journal of Botany, 75: 1371–1377. https://doi.org/10.1002/j.1537-2197.1988.tb14198.x
]Search in Google Scholar
[
Galen, C., Newport, M.E.A., 1987. Bumble bee behavior and selection on flower size in the skypilot, Polemonium viscosum. Ecology, 74: 20–23.
]Search in Google Scholar
[
Galen, C., Kaczorowski, R., todd, S.L., Geib, J., Raguso, R.A., 2011. Dosage-dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the alpine skypilot Polemonium viscosum. American Naturalist, 177: 258–272.
]Search in Google Scholar
[
Gibbs, P.E., Semir, J., Diniz, D.A., Cruz, N., 1977. Floral biology of Talauma ovata St. Hil. (Magnoliaceae). Ciência & Cultura, 29: 1437–1444.
]Search in Google Scholar
[
Gottsberger, G., Silberbauer-Gottsberger, I., Seymour, RS.,Dötterl, 2012. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora, 207: 107–118.
]Search in Google Scholar
[
Gupta, S.K., Monika., Gupta, V., Deepika., 2016. An overview of airborne contact dermatitis. Air & Water Borne Diseases, 5: 126.
]Search in Google Scholar
[
Hansen, D.M., Van DerNiet, T., Johnson, S.D., 2012. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proceedings of the Royal Society B: Biological Sciences, 279: 634–639. https://doi.org/10.1098/rspb.2011.1349
]Search in Google Scholar
[
Heiser Jr., C.B., 1962. Some observations on pollination and compatibility in Magnolia. Proceedings of the Indiana Academy of Science, 72: 259–266.
]Search in Google Scholar
[
Huang, M., Sanchez-Moreiras, A.M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J., Tholl, D., 2012. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defence against a bacterial pathogen. New Phytologist, 193: 997–1008. https://doi.org/10.1111/j.1469-8137.2011.04001.x
]Search in Google Scholar
[
Huda, M.K., Wilcock, C.C., 2008. Impact of floral traits on the reproductive success of epiphytic and terrestrial tropical orchids. Oecologia, 154: 731–741. https://doi.org/10.1007/s00442-007-0870-4
]Search in Google Scholar
[
Junker, R.R., Hocherl, N., Blüthgen, N., 2010. Responses to olfactory signals reflect network structure of flower-visitor interactions. Journal of Animal Ecology, 79: 818–823. https://doi.org/10.1111/j.1365-2656.2010.01698.x
]Search in Google Scholar
[
Junker, R.R., Parachnowitsch, A.L., 2015. Working towards a holistic view on flower traits-how floral scents mediate plant-animal interactions in concert with other floral characters. Journal of the Indian Institute of Science, 95: 43–67
]Search in Google Scholar
[
Kessler, D., Gase, K., Baldwin, I.T., 2008. Field experiments with transformed plants reveal the sense of floral scents. Science, 321: 1200–1202. DOI: 10.1126/science. 11600
]Search in Google Scholar
[
Khanduri, V.P., 2022. Birds visiting flowers of Erythrina suberosa: their abundance, frequency of visits and role as pollinators in a sub-tropical montane forest of Garhwal Himalaya. Polish Journal of Ecology, 70 (2-3): 117–127. https://doi.org/10.3161/15052249PJE2020.70.2.005
]Search in Google Scholar
[
Khanduri, V.P., 2023. Pollen limitation failing reproductive success in selected animal pollinated trees of tropical moist deciduous forest of north-eastern hill region, India. Hacquetia, 221: 117–129. DOI: 10.2478/hacq-2022-0014
]Search in Google Scholar
[
Khanduri, V.P., Kumar, K.S., Sharma, C.M., Riyal, M.K., Kar, K., 2019a. Pollen limitation and seed set associated with year-to-year variation in flowering of Gmelina arborea in a natural tropical forest. Grana, 58 (2): 133–143. https://doi.org/10.1080/00173134.2018.1536164
]Search in Google Scholar
[
Khanduri, V.P., Kumar, K.S., Sharma, C.M., Riyal, M.K., Kar, K., Singh, B., Sukumaran, A., 2021. Passerine birds supporting cross pollination in Erythrina stricta Roxb. Dendrobiology, 85: 117–126. https://doi.org/10.12657/denbio.085.011
]Search in Google Scholar
[
Khanduri, V.P., Sukumaran, A., 2019. Pollen dispersion in Myrica esculenta (Myricaceae): a dioecious anemophilous tree species of Himalaya. Aerobiologia, 35: 583–591. https://doi.org/10.1007/s10453-019-09594-y
]Search in Google Scholar
[
Khanduri, V.P., Sukumaran, A., Sharma, C.M., 2019b. Re productive biology of Cornus capitata Wall. ex Roxb.: a native species in East Asia. Journal of Forestry Research, 30: 2039–2050. https://doi.org/10.1007/s11676-018-0779-2
]Search in Google Scholar
[
Knudsen, J.T., Eriksson, R., Gershenzon, J., Stahl, B., 2006. Diversity and distribution of floral scent. The Botanical Review, 72: 1–120. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
]Search in Google Scholar
[
Kromer, T., Kessler, M., Lohaus, G., Schmidt‐Lebuhn, A.N., 2008. Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biology, 10: 502–511. https://doi.org/10.1111/j.1438-8677.2008.00058.x
]Search in Google Scholar
[
Levin, D.A., 2000. The origin, expansion, and demise of plant species. Oxford. UK: Oxford University Press.
]Search in Google Scholar
[
Lloyd, D.G., Webb, C.J., 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms. I. Dichogamy. New Zealand Journal of Botany, 24: 135–162. https://doi.org/10.1080/0028825X.1986.10409725
]Search in Google Scholar
[
Lo, M.M., Benfodda, Z., Molinié, R., Meffre, P., 2024. Volatile organic compounds emitted by flowers: ecological roles, production by plants, extraction, and identification. Plants, 13 (3): 417. https://doi.org/10.3390/plants13030417
]Search in Google Scholar
[
Losada, J.M., 2014. Magnolia virginiana: ephemeral courting for millions of years. Arnoldia, 71: 19–27.
]Search in Google Scholar
[
Medel, R., Botto-Mahan, C., Kalin-Arroyo, M., 2003. Pollinator-mediated selection on the nectar guide phenotype in the Andean monkey flower Mimulus luteus. Ecology, 84: 1721–1732. https://doi.org/10.1890/01-0688
]Search in Google Scholar
[
Negre-Zakharov, F., Long, M.C., Dudareva, N., 2009. Floral scents and fruit aromas inspired by nature. In Osbourn, A., Lanzonti, V. (eds). Plant-derived natural products. New York, NY, USA: Springer, p. 405–43.
]Search in Google Scholar
[
Paulus, H.F., Gack, C., 1990. Pollination of Ophrys (Orchidaceae) in Cyprus. Plant Systematics and Evolution, 169: 177–207. https://doi.org/10.1007/BF00937674
]Search in Google Scholar
[
Perveen, A., 2000. Pollen characters and their evolutionary significance with special reference to the flora of Karachi. Turkish Journal of Biology, 24: 365–377.
]Search in Google Scholar
[
Picman, A.K., Elliott, R.H., Towers, G.H.N., 1981. Cardiac-inhibiting properties of the sesquiterpene lactone, parthenin, in the migratory grasshopper, Melanoplus sanguinipes. Canadian Journal of Zoology, 59: 285–292.
]Search in Google Scholar
[
Perret, M., Chautems, A., Spichiger, R., Peixoto, M., Savolainen, V., 2001. Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Annals of Botany, 87: 267–273. https://doi.org/10.1006/anbo.2000.1331
]Search in Google Scholar
[
Qiu, Y.L., Chase, M.W., Parks, C.R., 1995. A chloroplast DNA phylogenetic study of the eastern Asia – eastern North America disjunct section Rytidospermum of Magnolia (Magnoliaceae). American Journal of Botany, 82 (12): 1582–1588. https://doi.org/10.1002/j.1537-2197.1995.tb13861.x
]Search in Google Scholar
[
Schiestl, F.P., Kirk, H., Bigler, L., Cozzolino, S., Desur-mont, G.A., 2014. Herbivory and floral signalling: phenotypic plasticity and tradeoffs between reproduction and indirect defence. New Phytologist, 203: 257–266. https://doi.org/10.1111/nph.12783
]Search in Google Scholar
[
Sharma, R.N., Joshi, V.N., 1977. Allomonic principles in Parthenium hysterophorus: potential as insect control agents and role in the seed’s resistance to serious insect depredation. Part II: the biological activity of parthenin on insects. Biovigyanam, 3: 225–231.
]Search in Google Scholar
[
Sukumaran, A., Khanduri, V.P., Sharma, C.M., 2020. Pollinator-mediated self-pollination and reproductive assurance in an isolated tree of Magnolia grandiflora L. Ecological Processes, 9: 45. https://doi.org/10.1186/s13717-020-00254-5
]Search in Google Scholar
[
Takhtajan, A., 1969. Flowering plants (origin and dispersal). Edinburg: Oliver & Boyd.
]Search in Google Scholar
[
Tetali, S.D., 2019. Terpenes and isoprenoids: a wealth of compounds for global use. Planta, 249: 1–8. https://doi.org/10.1007/s00425-018-3056-x
]Search in Google Scholar
[
Thien, L.B., 1974. Floral biology of Magnolia. American Journal of Botany, 61: 1037–1045.
]Search in Google Scholar
[
Thorne, R.F., 1996. The least specialized angiosperms. In Taylor, D.W., Hickey, L.J. (eds). Flowering plant origin, evolution & phylogeny. New York: Chapman and Hall, p. 286–313.
]Search in Google Scholar
[
Trunschke, J., Sletvold, N., Agren, J., 2017. Interaction intensity and pollinator-mediated selection. New Phytologist, 214: 909–912. https://doi.org/10.1111/nph.14479
]Search in Google Scholar
[
Tsujimoto, S.G., Ishii, H.H., 2017. Effect of flower perceptibility on spatial-reward associative learning by bumble bees. Behavioral Ecology and Sociobiology, 71 (7): 1–11. DOI: 10.1007/s00265-017-2328-y
]Search in Google Scholar
[
Ueda, K., 1986. Vascular systems in the Magnoliaceae. Botanical Magazine, Tokyo, 99: 333–349.
]Search in Google Scholar
[
Wen, J., 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics, 30: 421–455. https://doi.org/10.1146/annurev.ecolsys.30.1.421
]Search in Google Scholar
[
Xu, F., Rudall, P., 2006. Comparative floral anatomy and ontogeny in Magnoliaceae. Plant Systematics and Evolution, 258: 1–15. DOI: 10.1007/s00606-005-0361-1
]Search in Google Scholar
[
Yasukawa, S., Kato, H., Yamaoka, R., Tanaka, H., Arai, H., Kawano, S., 1992. Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae)-I. Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects. Plant Species Biology, 7:121–140. https://doi.org/10.1111/j.1442-1984.1992.tb00225.x
]Search in Google Scholar
[
Zhang, X.M., 2018. Floral volatile sesquiterpenes of Elsholtzia rugulosa (Lamiaceae) selectively attract Asian honeybees. Journal of Applied Entomology, 142: 359–362. https://doi.org/10.1111/jen.12481
]Search in Google Scholar