[
Adhikari, J.N., Bhattarai, B.P., Rokaya, M.B., Thapa, T.B., 2022. Land use/land cover changes in the central part of the Chitwan Annapurna Landscape, Nepal. PeerJ, 10: e13435. DOI: 10.7717/peerj.13435
]Search in Google Scholar
[
Ansari, M., Ghoddousi, A., 2018. Water availability limits brown bear distribution at the southern edge of its global range. Ursus, 29 (1): 13–24. DOI: 10.2192/UR SUS-D-16-00017.1
]Search in Google Scholar
[
Balasubramanian, A., 2017. Biodiversity profile of India. Report submitted to Centre for Advanced Studies in Earth Science, University of Mysore, Mysore. 11 p.
]Search in Google Scholar
[
Baral, S., Gautam, A.P., Vacik, H., 2018. Ecological and economical sustainability assessment of community forest management in Nepal: a reality check. Journal of Sustainable Forestry, 37 (8): 820-841. DOI: 10.1080/10549811.2018.1490188
]Search in Google Scholar
[
Battle, C.S., 2016. Sex-specific habitat suitability models for Panthera tigris in Chitwan National Park, Nepal. Master thesis. San Diego State University.
]Search in Google Scholar
[
Bhattarai, B.P., Kindlmann, P., 2012. Habitat heterogeneity as the key determinant of the abundance and habitat preference of prey species of tiger in the Chitwan National Park, Nepal. Acta Theriologica, 57 (1): 89–97. DOI: 10.1007/s13364-011-0047-8
]Search in Google Scholar
[
Bhuju, U.R., Shakya, P.R., Basnet, T.B., Shrestha, S., 2007. Nepal biodiversity resource book: Protected areas, Ramsar sites, and World Heritage sites. International Centre for Integrated Mountain Development, Ministry of Environment, Science and Technology, Govt. of Nepal, Kathmandu. 128 p.
]Search in Google Scholar
[
Brown, J.L., Bennett, J.R., French, C.M., 2017. SDM-toolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 5: e4095. DOI:10.7717/peerj.4095
]Search in Google Scholar
[
CBD, 1992. Convention on Biological Diversity:Text of the Convention. [cit. 2024-02-05]. http://www.cbd.int/convention/text/
]Search in Google Scholar
[
DHM, 2019. Data of temperature and rainfall. [cit. 2023-12-18]. https://www.dhm.gov.np/
]Search in Google Scholar
[
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E.C., Jones, B., Barber, C.V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Bail-lie, J.E.M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L., Brito, J.C., Llewellyn, O.A., Miller, A.G., Patzelt, A., Ghazanfar, S.A., Timberlake, J., Kloser, H., Shennan-Farpon, Y., Kindt, R., L i l l e -so,.B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K.F., Saleem, M., 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67 (6): 534–545. DOI: 10.1093/biosci/bix014
]Search in Google Scholar
[
Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40 (1): 677–697.
]Search in Google Scholar
[
Fahrig, L., McGill, B., 2019. Habitat fragmentation: a long and tangled tale. Global Ecology and Biogeography, 28 (1): 33–41. DOI:10.1111/geb.12839
]Search in Google Scholar
[
Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24 (1): 38–49. doi:10.1017/S0376892997000088
]Search in Google Scholar
[
Ge, G., Shi, Z., Zhu, Y., Yang, X., Hao, Y., 2020. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: performance assessment of four machine learning algorithms. Global Ecology and Conservation, 22: e00971. DOI: 10.1016/j.gecco.2020.e00971
]Search in Google Scholar
[
Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8 (9): 993–1009. DOI: 10.1111/j.1461-0248.2005.00792.x
]Search in Google Scholar
[
Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135 (2-3): 147–186. DOI: 10.1016/S0304-3800(00)00354-9
]Search in Google Scholar
[
Habiba, U., Anwar, M., Khatoon, R., Hussain, M., Khan, K.A., Khalil, S., Bano, S.A., Hussain, A., 2021. Feeding habits and habitat use of barking deer (Muntiacus vaginalis) in Himalayan foothills, Pakistan. PLoS One, 16 (1): e0245279. DOI: 10.1371/journal.pone.0245279
]Search in Google Scholar
[
Hirzel, A.H., Le Lay, G., 2008. Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45 (5): 1372–1381. DOI: 10.1111/j.1365-2664.2008.01524.x
]Search in Google Scholar
[
Huang, C., Li, X., Khanal, L., Jiang, X., 2018. Habitat suitability and connectivity inform a co-managed policy of protected areas networks for Asian elephants in China. PeerJ Preprints, 6: e27397v27391. DOI: 10.7287/peerj.preprints.27397v1
]Search in Google Scholar
[
Hunter, M.L., Yonzon, P., 1993. Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. Conservation Biology, 7 (2): 420–423. [cit. 2024-01-12]. https://www.jstor.org/stable/2386441
]Search in Google Scholar
[
Jamal, S., 2020. Biogeographical classification of India. India: Environmental Geography. [cit. 2023-12-18].https://ebooks.inflibnet.ac.in/geop08
]Search in Google Scholar
[
Jianping, Y., Xiaonan, C., Shunhai, Y., Zhifang, L., Xiaoli, S., Mingchang, C., 2020. Habitat assessment of black muntjac (Muntiancus cirnifrons) in the Gutianshan National Nature Reserve based on MAXENT modeling. Acta Theriologica Sinica, 40 (2): 143. DOI: 10. 16829/j.slxb.150258
]Search in Google Scholar
[
Jnawali, S., Baral, H., Lee, S., Acharya, K., Upadhyay, G., Pandey, M., Shrestha, R., Joshi, D., Lamichhane, B., Griffiths, J., 2011. The Status of Nepal’s Mammals. The National Red List Series-IUCN. Kathmandu, Nepal: Department of National Parks and Wildlife Conservation. 276
]Search in Google Scholar
[
Kanagaraj, R., Wiegand, T., Kramer‐Schadt, S., Anwar, M., Goyal, S.P., 2011. Assessing habitat suitability for tiger in the fragmented Terai Arc Landscape of India and Nepal. Ecography, 34 (6): 970–981. DOI:10.1111/j.1600-0587.2010.06482.x
]Search in Google Scholar
[
Karanth, K., Nichols, J.D., Karanth, K.U., Hines, J.E., Christensen, N.L., Jr. 2010. The shrinking ark: patterns of large mammal extinctions in India. Proceedings of Biological Sciences, 277 (1690): 1971–1979. DOI: 10.1098/rspb.2010.0171
]Search in Google Scholar
[
Knapp, R.G., 1992. Chinese landscapes: the village as place. Honolulu: University of Hawaii Press. 313 p.
]Search in Google Scholar
[
Kogo, B.K., Kumar, L., Koech, R., Kariyawasam, C.S., 2019. Modelling climate suitability for rainfed maize cultivation in Kenya using a Maximum Entropy (Max-ENT) approach. Agronomy, 9 (11): 727. DOI: 10.3390/agronomy9110727
]Search in Google Scholar
[
Krishnamurthy, R., Cushman, S.A., Sarkar, M.S., Malviya, M., Naveen, M., Johnson, J.A., Sen, S., 2016. Multi-scale prediction of landscape resistance for tiger dispersal in central India. Landscape Ecology, 31: 1355–1368. DOI: 10.1007/s10980-016-0363-0
]Search in Google Scholar
[
Lu, C.Y., Gu, W., Dai, A.H., Wei, H.Y., 2012. Assessing habitat suitability based on geographic information system (GIS) and fuzzy: a case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China. Ecological Modelling, 242: 105–115. DOI: 10.1016/j.ecolmodel. 2012.06.002
]Search in Google Scholar
[
Maharjan, B., Shahnawaz, T.B., Shrestha, P.M., 2017. Geo-spatial analysis of habitat suitability for common leopard (Panthera pardus Linnaeus, 1758) in Shivapuri Nagarjun National Park, Nepal. Environment and Ecology Research, 5: 117–128. DOI: 10.13189/eer.2017.050206
]Search in Google Scholar
[
Mishra, H.R., 1982. The ecology and behaviour of chital (Axis axis) in the Royal Chitwan National Park, Nepal: with comparative studies of hog deer (Axis porcinus), sambar (Cervus unicolor) and barking deer (Muntiacus muntjak). PhD thesis. University of Edinburgh, UK. [cit. 2024-02-02]. http://hdl.handle.net/1842/15405
]Search in Google Scholar
[
MOFSC, 2016. Conservation Landscapes of Nepal. Ministry of Forests and Soil Conservation, Singha Durbar, Kathmandu, Nepal. [cit. 2024-02-02]. https://www.dofsc.gov.np.
]Search in Google Scholar
[
Naughton-Treves, L., Holland, M.B., Brandon, K., 2005. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annual Review of Environment and Resources, 30 (1): 219–252. DOI: 10.1146/annurev.energy.30.050504.164507
]Search in Google Scholar
[
NLCDC, 2020. Lake database of Nepal. [cit. 2024-11-1]. https://nepallake.gov.np/
]Search in Google Scholar
[
Paudel, P.K., Bhattarai, B.P., Kindlmann, P., 2012. An overview of the biodiversity in Nepal. In Kindlmann, P. (ed.). Himalayan biodiversity in the changing world. Dordrecht: Springer, p. 1–40. DOI: 10.1007/978-94-007-1802-9_1
]Search in Google Scholar
[
Paudel, P.K., Hais, M., Kindlmann, P., 2015. Habitat suitability models of mountain ungulates: Identifying potential areas for conservation. Zoological Studies, 54 (1): 1–16. DOI:10.1186/s40555-015-0116-9
]Search in Google Scholar
[
Paudel, P.K., Heinen, J.T., 2015. Conservation planning in the Nepal Himalayas: effectively designing reserves for heterogeneous landscapes. Applied Geography, 56: 127–134. DOI:10.1016/j.apgeog.2014.11.018
]Search in Google Scholar
[
Paudel, P.K., Kindlmann, P., Gordon, I., Mishra, C., 2012. Human disturbance is a major determinant of wildlife distribution in Himalayan mid-hill landscapes of Nepal. Animal Conservation, 15 (3): 283–293. DOI:10.1111/j.1469-1795.2011.00514.x
]Search in Google Scholar
[
Penjor, U., Kaszta, Ż., Macdonald, D.W., Cushman, S.A., 2021. Prioritizing areas for conservation outside the existing protected area network in Bhutan: the use of multi-species, multi-scale habitat suitability models. Landscape Ecology, 36: 1281–1309. DOI: 10.1007/s10980-021-01225-7
]Search in Google Scholar
[
Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jędrzejewska, B., Lima, M., Kausrud, K., 2011. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Research, 46 (1): 15–27. DOI: 10.3354/cr00936
]Search in Google Scholar
[
Phillips, S.J., 2008. Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography, 31 (2): 272–278.
]Search in Google Scholar
[
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3-4): 231–259. DOI: 10.1016/j.ecolmodel.2005.03.026
]Search in Google Scholar
[
Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31 (2): 161–175. DOI: 10.1111/j.0906-7590.2008.5203.x
]Search in Google Scholar
[
Pla-ard, M., Khioesree, N., Sungkalak, B., Nathalang, A., Thomas, W., Uthairatsamee, S., Paansri, P., Chanachai, Y., Sukmasuang, R., 2022. Population characteristics and habitat suitability of Khao Yai National Park, Thailand for Asian elephant and five ungulate species. Biodiversitas Journal of Biological Diversity, 23 (1): 231–243. DOI :10.13057/biodiv/d230129
]Search in Google Scholar
[
Primack, R., Paudel, P., Bhattarai, B., 2013. Conservation biology: a primer for Nepal. Kathmandu, Nepal: Dream-land Publication. 432 p.
]Search in Google Scholar
[
Qin, A., Liu, B., Guo, Q., Bussmann, R.W., Ma, F., Jian, Z., Xu, G., Pei, S., 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10: 139–146. DOI: 10.1016/j.gecco.2017.02.004
]Search in Google Scholar
[
Rather, T.A., Kumar, S., Khan, J.A., 2020. Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest al gorithm. Scientific Reports, 10 (1): 11473. DOI:10.1038/s41598-020-68167-z
]Search in Google Scholar
[
Rimal, S., Adhikari, H., Tripathi, S., 2018. Habitat suitability and threat analysis of greater one-horned rhino Rhinoceros unicornis Linnaeus, 1758 (Mammalia: Perissodactyla: Rhinocerotidae) in Rautahat District, Nepal. Journal of Threatened Taxa, 10 (8): 11999–12007. DOI: 10.11609/jott.3948.10.8.11999-12007
]Search in Google Scholar
[
Sarkar, M., Pandey, A., Singh, G., Lingwal, S., John, R., Hussain, A., Rawat, G., Rawal, R., 2018. Multiscale statistical approach to assess habitat suitability and connectivity of common leopard (Panthera pardus) in Kailash Sacred Landscape, India. Spatial Statistics, 28: 304–318. DOI: 10.1016/j.spasta.2018.07.006
]Search in Google Scholar
[
Sarkar, M.S., Krishnamurthy, R., Johnson, J.A., Sen, S., Saha, G.K., 2017. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India. PeerJ, 5: e3920. DOI: 10.7717/peerj.3920
]Search in Google Scholar
[
Sharma, P., Panthi, S., Yadav, S.K., Bhatta, M., Karki, A., Duncan, T., Poudel, M., Acharya, K.P., 2020. Suitable habitat of wild Asian elephant in Western Terai of Nepal. Ecology and Evolution, 10 (12): 6112–6119. DOI: 10.1002/ece3.6356
]Search in Google Scholar
[
Shrestha, B., Kindlmann, P., 2020. Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Scientific Reports, 10 (1): 1–11. DOI: 10.1038/s41598-020-76912-7
]Search in Google Scholar
[
Shrestha, U.B., Shrestha, S., Chaudhary, P., Chaudhary, R.P., 2010. How representative is the protected areas system of Nepal? Mountain Research and Development, 30 (3): 282–294. DOI: 10.1659/MRD-JOURNAL-D-10-00019.1
]Search in Google Scholar
[
Silveira, L., Jacomo, A.T., Diniz-Filho, J.A.F., 2003. Camera trap, line transect census and track surveys: a comparative evaluation. Biological Conservation, 114 (3): 351–355. DOI: 10.1016/S0006-3207(03)00063-6
]Search in Google Scholar
[
Singh, V.K., Joshi, B.D., Singh, A., Singh, S.K., Chandra, K., Sharma, L.K., Thakur, M., 2022. Genetic diversity and population structure of the northern red muntjac (Muntiacus vaginalis) in Indian Himalayan region. Mammalian Biology, 82: e242334. 8 p. DOI: 10.1590/1519-6984.242334
]Search in Google Scholar
[
Team, Q.D., 2022. QGIS Geographic Information System: Open Source Geospatial Foundation Project. [cited 2023-12-14]. http://qgis.osgeo.org
]Search in Google Scholar
[
USGS, 2022. Landsat Normalized Difference Vegetation Index. [cit. 2024-01-05]. https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index
]Search in Google Scholar
[
Watts, S.M., McCarthy, T.M., Namgail, T., 2019. Modelling potential habitat for snow leopards (Panthera uncia) in Ladakh, India. PLoS One, 14 (1): e0211509. DOI: 10. 1371/journal.pone.0211509
]Search in Google Scholar
[
Wikramanayake, E.D., Dinerstein, E., Loucks, C.J., 2002. Terrestrial ecoregions of the Indo-Pacific: a conservation assessment. Ecoregions Assessments Series, Vol. 3. Washington D.C.: Island Press. 643 p.
]Search in Google Scholar
[
WWF, 2013a. Chitwan-Annapurna landscape: a rapid assessment. Vol. 1. Baluwatar, Kathmandu: WWF Nepal, Hariyo Ban Program.
]Search in Google Scholar
[
WWF, 2013b. Chitwan-Annapurna landscape. Biodiversity important areas and linkages. Sharma, U.R. (ed ). Baluwatar, Kathmandu, Nepal: WWF Nepal, Hariyo Ban Program. 61 p. [cit. 2024-02-11]. https://www.wwfnepal.org/
]Search in Google Scholar
[
Xu, D., Guo, X., 2014. Compare NDVI extracted from Land-sat 8 imagery with that from Landsat 7 imagery. American Journal of Remote Sensing, 2 (2): 10–14. DOI: 10.11648/j.ajrs.20140202.11
]Search in Google Scholar
[
Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27 (14): 3025–3033. DOI: 10.1080/0143116060 0589179
]Search in Google Scholar
[
Yengoh, G.T., Dent, D., Olsson, L., Tengberg, A.E., Tucker III, C.J., 2015. Use of the Normalized Difference Vegetation Index (NDVI) to assess land degradation at multiple scales: current status, future trends, and practical considerations. Sweden: Lund University, Center for Sustainability Studies (LUCSUS), and The Scientific and Technical Advisory Panel of the Global Environment Facility (STAP/GEF). 80 p.
]Search in Google Scholar
[
Zha, Y., Gao, J., Ni,S., 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24 (3): 583–594. doi:10.1080/01431160304987
]Search in Google Scholar