Accesso libero

The role of soil and plant cover as drivers of soil macrofauna of the Dnipro River floodplain ecosystems

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Alletto, L., Pot, V., Giuliano, S., Costes, M., Perdrieux, F., Justes, E., 2015. Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil. Geoderma, 243–244: 18–28. https://doi.org/10.1016/j.geoderma.2014.12.006 Search in Google Scholar

Arnaud-Fassetta, G., Astrade, L., Bardou, É., Corbonnois, J., Delahaye, D., Fort, M., Gautier, E., Jacob, N., Peiry, J.-L., Piégay, H., Penven, M.-J., 2009. Fluvial geomorphology and flood-risk management. Géomorphologie : Relief, Processus, Environment, 15: 109–128. https://doi.org/10.4000/geomorphologie.7554 Search in Google Scholar

Asfaw, A., Zewudie, S., 2021. Soil macrofauna abundance, biomass and selected soil properties in the home garden and coffee-based agroforestry systems at Wondo Genet, Ethiopia. Environmental and Sustainability Indicators, 12: 100153. https://doi.org/10.1016/j.indic.2021.100153 Search in Google Scholar

Ayuke, F.O., 2010. Soil macrofauna functional groups and their effects on soil structure, as related to agricultural management practices across agroecological zones of Sub-Saharan Africa. Thesis. Wageningen, NL: Wageningen University, 202 p. Search in Google Scholar

Barrios, E., 2007. Soil biota, ecosystem services and land productivity. Ecological Economics, 64: 269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004 Search in Google Scholar

Belgard, A.L., 1950. Lesnaya rastitel’nost’ yugo-vostoka USSR [Forest vegetation of the south-eastern part of Ukraine]. Kyiv: KGU im. Shevchenko. 263 p. Search in Google Scholar

Belgard, A.L., 1971. Stepnoe lesovedenie [Steppe forestry]. Moskva: Lesnaya promyshlennost. 336 p. Search in Google Scholar

Benefer, C.M., Knight, M.E., Ellis, J.S., Hicks, H., Blackshaw, R.P., 2012. Understanding the relationship between adult and larval Agriotes distributions: the effect of sampling method, species identification and abiotic variables. Applied Soil Ecology, 53: 39–48. https://doi.org/10.1016/j.apsoil.2011.11.004 Search in Google Scholar

Benjankar, R., Egger, G., Jorde, K., Goodwin, P., Glenn, N.F., 2011. Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92: 3058–3070. https://doi.org/10.1016/j.jenvman.2011.07.017 Search in Google Scholar

Blanchet, F.G., Legendre, P., Borcard, D., 2008. Forward selection of explanatory variables. Ecology, 89: 2623–2632. https://doi.org/10.1890/07-0986.1 Search in Google Scholar

Bondarev, D., Fedushko, M., Hubanova, N., Novitskiy, R., Kunakh, O., Zhukov, O., 2022. Temporal dynamics of the fish communities in the reservoir: the influence of eutrophication on ecological guilds structure. Ichthyological Research. https://doi.org/10.1007/s10228-021-00854-x Search in Google Scholar

Botros, F.E., Harter, T., Onsoy, Y.S., Tuli, A., Hopmans, J.W., 2009. Spatial variability of hydraulic properties and sediment characteristics in a deep alluvial unsaturated zone. Vadose Zone Journal, 8: 276–289. https://doi.org/10.2136/vzj2008.0087 Search in Google Scholar

Bouché, M.B., 1977. Stratégies lombriciennes [Earthworm strategies]. In Lohm, U., Persson, T. (eds). Soil organisms as components of ecosystems. Ecology Bulletin. Stockholm, Sweden: Swedish Natural Science Research Council, p. 122–132. Search in Google Scholar

Bouska, K.L., Houser, J.N., De Jager, N.R., Drake, D.C., Collins, S.F., Gibson-Reinemer, D.K., Thomsen, M.A., 2020. Conceptualizing alternate regimes in a large flood-plain-river ecosystem: water clarity, invasive fish, and floodplain vegetation. Journal of Environmental Management, 264: 110516. https://doi.org/10.1016/j.jenvman.2020.110516 Search in Google Scholar

Bullinger-Weber, G., Le Bayon, R.-C., Guenat, C., Gobat, J.-M., 2007. Influence of some physicochemical and biological parameters on soil structure formation in alluvial soils. European Journal of Soil Biology, 43: 57–70. https://doi.org/10.1016/j.ejsobi.2006.05.003 Search in Google Scholar

Buzuk, G.N., 2017. Phytoindication with ecological scales and regression analysis: environmental index. Bulletin of Pharmacy, 2: 31–37. Search in Google Scholar

Cáceres, M. De, 2013. How to use the indicspecies package (ver. 1.7.1). R Project. 29 p. Search in Google Scholar

Capon, S.J., Dowe, J.L., 2007. Diversity and dynamics of riparian vegetation. In Lovett, S., Price, P. (eds). Principles for riparian lands management. Canberra, Australia: Land and Water Australia, p. 174. Search in Google Scholar

Chapman, A., 2014. The influence of landscape heterogeneity – ground beetles (Coleoptera: Carabidae) in Fthiotida, Central Greece. Biodiversity Data Journal, 2: e1082. https://doi.org/10.3897/BDJ.2.e1082 Search in Google Scholar

Clements, F.E., 1936. Nature and structure of the climax. The Journal of Ecology, 24: 252. https://doi.org/10.2307/2256278 Search in Google Scholar

Dexter, A.R., 2004. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120: 201–214. https://doi.org/10.1016/j.geoderma.2003.09.004 Search in Google Scholar

Didukh, Y.P., 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre. 176 p. Search in Google Scholar

Didukh, Y.P., Chusova, O.O., Olshevska, I.A., Polishchuk, Y.V., 2015. River valleys as the object of ecological and geobotanical research. Ukrainian Botanical Journal, 72: 415–430. https://doi.org/10.15407/ukrbotj72.05.415 Search in Google Scholar

Doering, M., Freimann, R., Antenen, N., Roschi, A., Robinson, C.T., Rezzonico, F., Smits, T.H.M., Tonolla, D., 2021. Microbial communities in floodplain ecosystems in relation to altered flow regimes and experimental flooding. Science of The Total Environment, 788: 147497. https://doi.org/10.1016/j.scitotenv.2021.147497 Search in Google Scholar

Dokuchaev, V. V., 1883. Russian Chernozem. Report to the Imperial Free Economic Society. Tipogr. Declerona i Evdokimova, St. Petersburg. Search in Google Scholar

Dolin, V.G., 1978. Identification key of larvae of click beetles fauna of the USSR. Kyiv: Urozhay. 124 p. Search in Google Scholar

Dray, S., Dufour, A.B., 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22: 1–20. https://doi.org/10.18637/jss.v022.i04 Search in Google Scholar

Dray, S., Legendre, P., Peres-Neto, P.R., 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196: 483–493. https://doi.org/10.1016/j.ecolmodel.2006.02.015 Search in Google Scholar

Dubyna, D. V., Dziuba, Т.P., Iemelianova, S.M., Tymoshenko, P.A., 2020. Syntaxonomy and ecological differentiation of the pioneer vegetation of Ukraine. 2. Helichryso-Crucianelletea maritimae, Festucetea vaginatae, Koelerio-Corynephoretea canescentis classes. Biosystems Diversity, 28: 298–319. https://doi.org/10.15421/012039 Search in Google Scholar

Filser, J., Faber, J.H., Tiunov, A. V., Brussaard, L., Frouz, J., De Deyn, G., Uvarov, A. V., Berg, M.P., Lavelle, P., Loreau, M., Wall, D.H., Querner, P., Eijsackers, H., Jiménez, J.J., 2016. Soil fauna: key to new carbon models. Soil, 2: 565–582. https://doi.org/10.5194/soil-2-565-2016 Search in Google Scholar

Florinsky, I. V., 2012. The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication). Eurasian Soil Science, 45: 445–451. https://doi.org/10.1134/S1064229312040047 Search in Google Scholar

Gebauer, R.L.E., Tenhunen, J.D., Reynolds, J.F., 1996. Soil aeration in relation to soil physical properties, nitrogen availability, and root characteristics within an arctic watershed. Plant and Soil, 178: 37–48. https://doi.org/10.1007/BF00011161 Search in Google Scholar

Gholami, S., Sayad, E., Gebbers, R., Schirrmann, M., Joschko, M., Timmer, J., 2016. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia, 59 (1): 27–36. https://doi.org/10.1016/j.pedobi.2015.12.003 Search in Google Scholar

Glaeser, J., Wulf, M., 2009. Effects of water regime and habitat continuity on the plant species composition of floodplain forests. Journal of Vegetation Science, 20: 37–48. https://doi.org/10.1111/j.1654-1103.2009.05282.x Search in Google Scholar

Globevnik, L., Januschke, K., Kail, J., Snoj, L., Manfrin, A., Azlak, M., Christiansen, T., Birk, S., 2020. Preliminary assessment of river floodplain condition in Europe. ETC/ICM Technical Report 5/2020. European Topic Centre on Inland, Coastal and Marine waters. 121 p. Search in Google Scholar

Goncharenko, I., Kozyr, M., Senchylo, O., 2020. Classification of the floodplain meadows of the Seym and the Dnieper river valleys in the north-eastern part of Ukraine. Biologia, 75: 53–70. https://doi.org/10.2478/s11756-019-00361-5 Search in Google Scholar

Gorres, J.H., Amador, J.A., 2010. Partitioning of habitable pore space in earthworm burrows. Journal of Nematology, 42: 68–72. Search in Google Scholar

Greene, R.S.B., Hairsine, P.B., 2004. Elementary processes of soil–water interaction and thresholds in soil surface dynamics: a review. Earth Surface Processes and Landforms, 29: 1077–1091. https://doi.org/10.1002/esp.1103 Search in Google Scholar

Gren, I.-M., Groth, K.-H., Sylvén, M., 1995. Economic values of Danube floodplains. Journal of Environmental Management, 45: 333–345. https://doi.org/10.1006/jema.1995.0080 Search in Google Scholar

Gritsan, Y. I., Kunakh, O.M., Dubinina, J.J., Kotsun, V.I., Tkalich, Y.I., 2019. The catena aspect of the landscape diversity of the “Dnipro-Orilsky” natural reserve. Journal of Geology, Geography and Geoecology, 28: 417–431. https://doi.org/10.15421/111939 Search in Google Scholar

Gritsan, Y. I., Kunah, O.M., Fedushko, M.P., Babchenko, A. V., Sirovatko, V.O., Zhukov, O. V., Kotsun, V.I., 2019. Albedo of the soil cover as a factor of the temporal dynamics of readily available soil moisture in the technosols of the Nikopol manganese ore basin. Agrology, 2: 161–169. https://doi.org/10.32819/019024 Search in Google Scholar

Halarewicz, A., Pruchniewicz, D., Kawałko, D., 2021. Using direct and indirect methods to assess changes in riparian habitats. Forests, 12: 504. https://doi.org/10.3390/f12040504 Search in Google Scholar

Hodson, M.E., Benning, L.G., Demarchi, B., Penkman, K.E.H., Rodriguez-Blanco, J.D., Schofield, P.F., Versteegh, E.A.A., 2015. Biomineralisation by earth worms – an investigation into the stability and distribution of amorphous calcium carbonate. Geochemical Transactions, 16: 4. https://doi.org/10.1186/s12932-015-0019-z Search in Google Scholar

Hohensinner, S., Grupe, S., Klasz, G., Payer, T., 2022. Long-term deposition of fine sediments in Vienna’s Danube floodplain before and after channelization. Geomorphology, 398: 108038. https://doi.org/10.1016/j.geomorph.2021.108038 Search in Google Scholar

Horn, H.S., 1974. The ecology of secondary succession. Annual Review of Ecology and Systematics, 5: 25–37. https://doi.org/10.1146/annurev.es.05.110174.000325 Search in Google Scholar

Horn, M.A., Schramm, A., Drake, H.L., 2003. The earth-worm gut: an ideal habitat for ingested N2O-producing microorganisms. Applied and Environmental Micro-biology, 69: 1662–1669. https://doi.org/10.1128/AEM.69.3.1662-1669.2003 Search in Google Scholar

Horn, R., Taubner, H., Wuttke, M., Baumgartl, T., 1994. Soil physical properties related to soil structure. Soil and Tillage Research, 30: 187–216. https://doi.org/10.1016/0167-1987(94)90005-1 Search in Google Scholar

Hu, W., Tabley, F., Beare, M., Tregurtha, C., Gillespie, R., Qiu, W., Gosden, P., 2018. Short-term dynamics of soil physical properties as affected by compaction and cillage in a silt soam soil. Vadose Zone Journal, 17: 180115. https://doi.org/10.2136/vzj2018.06.0115 Search in Google Scholar

Illian, J., Burslem, D., 2007. Contributions of spatial point process modelling to biodiversity theory. Journal de la Societe Francaise de Statistique, 148: 9–29. Search in Google Scholar

Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F.D., 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69: 1338–1350. https://doi.org/10.2136/sssaj2004.0154 Search in Google Scholar

Jakubowska, M., Bocianowski, J., Nowosad, K., 2018. Seasonal fluctuation of Agriotes lineatus, A. obscurus and A. sputator click beetles caught using pheromone traps in Poland. Plant Protection Science, 54: 118–127. https://doi.org/10.17221/39/2016-PPS Search in Google Scholar

Jenny, H., 1941. Factors of soil formation: a system of quantitative pedology. New York: Dover Publications. 281 p. Search in Google Scholar

Jones, C.G., Gutiérrez, J.L., Groffman, P.M., Shachak, M., 2006. Linking ecosystem engineers to soil processes: a framework using the Jenny State Factor Equation. European Journal of Soil Biology, 42: S39-S53. https://doi.org/10.1016/j.ejsobi.2006.07.017 Search in Google Scholar

Jozefaciuk, G., 2009. Effect of the size of aggregates on pore characteristics of minerals measured by mercury intrusion and water-vapor desorption techniques. Clays and Clay Minerals, 57: 586–601. https://doi.org/10.1346/CCMN.2009.0570507 Search in Google Scholar

Karpachevsky, L.O., 2005. Ekologicheskoe pochvovedenie [Ecological soil science]. Moskva: GEOS 335 p. Search in Google Scholar

Kercheva, M., Sokołowska, Z., Hajnos, M., Skic, K., Shishkov, T., 2017. Physical parameters of Fluvisols on flooded and non-flooded terraces. International Agrophysics, 31: 73–82. https://doi.org/10.1515/intag-2016-0026 Search in Google Scholar

Kiedrzyńska, E., Kiedrzyński, M., Zalewski, M., 2015. Sustainable floodplain management for flood prevention and water quality improvement. Natural Hazards, 76: 955–977. https://doi.org/10.1007/s11069-014-1529-1 Search in Google Scholar

Kolesnikova, A., Lapteva, E., Degteva, S., Taskaeva, A., Kudrin, A., Vinogradova, Y., Khabibullina, F., 2016. Biodiversity of floodplain soils in the European North-East of Russia. In River basin management. London: InTechOpen, p. 271–294. https://doi.org/10.5772/63713 Search in Google Scholar

Korobushkin, D.I., Gongalsky, K.B., Gorbunova, A.Y., Palatov, D.M., Shekhovtsov, S. V., Tanasevitch, A. V., Volkova, J.S., Chimidov, S.N., Dedova, E.B., Ladatko, V.A., Sunitskaya, T. V., John, K., Saifutdinov, R.A., Zaitsev, A.S., 2019. Mechanisms of soil macro-fauna community sustainability in temperate rice-growing systems. Scientific Reports, 9: 10197. https://doi.org/10.1038/s41598-019-46733-4 Search in Google Scholar

Krivolutsky, D.A., 1994. Pochvennaja fauna v ekologicheskom kontrole [Soil fauna in ecological control]. Moskva: Nauka. 240 p Search in Google Scholar

Kunakh, O.M., Yorkina, N.V., Budakova, V.S., Zhukova, Y.O., 2021. An ecomorphic approach to assessing the biodiversity of soil macrofauna communities in urban parks. Agrology, 4: 114‒130. https://doi.org/10.32819/021015 Search in Google Scholar

Lavelle, P., Senapati, B., Barros, E., 2003. Soil macrofauna. In Schroth, G., Sinclair, F.L. (eds). Trees, crops and soil fertility: concepts and research methods. Wallingford: CAB International, 2003, p. 303–323. Search in Google Scholar

Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.F., He, F., 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90: 663–674. https://doi.org/10.1890/07-1880.1 Search in Google Scholar

Lin, H., 2011. Three principles of soil change and pedogenesis in time and space. Soil Science Society of America Journal, 75: 2049–2070. https://doi.org/10.2136/sssaj2011.0130 Search in Google Scholar

Lönnberg, L., Jonsell, M., 2012. Sand pits as habitats for beetles (Coleoptera): does area affect species number and composition? Biodiversity and Conservation, 21: 853–874. https://doi.org/10.1007/s10531-012-0225-2 Search in Google Scholar

Lososová, Z., Šmarda, P., Chytrý, M., Purschke, O., Pyšek, P., Sádlo, J., Tichý, L., Winter, M., 2015. Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. Journal of Vegetation Science, 26: 1080–1089. https://doi.org/10.1111/jvs.12308 Search in Google Scholar

Mansyur, N.I., Hanudin, E., Purwanto, B.H., Utami, S.N.H., 2019. Morphological characteristics and classification of soils formed from acidic sedimentary rocks in North Kalimantan. IOP Conference Series: Earth and Environmental Science, 393: 012083. https://doi.org/10.1088/1755-1315/393/1/012083 Search in Google Scholar

Marcon, E., Hérault, B., 2015. Entropart: an R package to measure and partition diversity. Journal of Statistical Software, 67. https://doi.org/10.18637/jss.v067.i08 Search in Google Scholar

Mathieu, J., Rossi, J.P., Grimaldi, M., Mora, P., Lavelle, P., Rouland, C., 2004. A multi-scale study of soil macrofauna biodiversity in Amazonian pastures. Biology and Fertility of Soils, 40: 300–305. https://doi.org/10.1007/s00374-004-0777-8 Search in Google Scholar

Medvedev, S.I., 1952. Larvae of scarabaeid beetles of the fauna of the USSR. Opredeliteli po faune SSSR 47. Moskva, Leningrad: Akademija Nauk SSSR. 344 p. Search in Google Scholar

Mierzwa, D., 2009. Cepaea vindobonensis (Férussac, 1821) (Gastropoda: Pulmonata: Helicidae) in Central, Northwestern and Western Poland. Folia Malacologica, 17: 185–198. https://doi.org/10.2478/v10125-009-0015-y Search in Google Scholar

Mougi, A., Nishimura, K., 2009. Species invasion history influences community evolution in a tri-trophic food web model. PLoS ONE, 4: e6731. https://doi.org/10.1371/journal.pone.0006731 Search in Google Scholar

Naiman, R.J., Décamps, H., McClain, M.E., 2005. Riparia: ecology, conservation and management of streamside communities. Amsterdam, The Netherlands: Elsevier Academic Press. 448 p. Search in Google Scholar

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2018. Community ecology package. R package version 2.5-2. Search in Google Scholar

Orfánus, T., Stojkovová, D., Nagy, V., Németh, T., 2016. Variability of soil water content controlled by evapotranspiration and groundwater–root zone interaction. Archives of Agronomy and Soil Science, 62: 1602–1613. https://doi.org/10.1080/03650340.2016.1155700 Search in Google Scholar

Pauli, N., Oberthür, T., Barrios, E., Conacher, A.J., 2010. Fine-scale spatial and temporal variation in earthworm surface casting activity in agroforestry fields, western Honduras. Pedobiologia, 53: 127–139. https://doi.org/10.1016/j.pedobi.2009.08.001 Search in Google Scholar

Pennisi, B.V., van Iersel, M., 2002. 3 ways to measure medium EC. GMPro, 22: 46–48. Search in Google Scholar

Pereira, C.S., Lopes, I., Abrantes, I., Sousa, J.P., Chelinho, S., 2019. Salinization effects on coastal ecosystems: a terrestrial model ecosystem approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 374: 20180251. https://doi.org/10.1098/rstb.2018.0251 Search in Google Scholar

Phillipson, J., Abel, R., Steel, J., Woodell, S.R.J., 1976. Earthworms and factors governing their distribution in an English beechwood. Pedobiology, 16: 258–285. Search in Google Scholar

Pindrus, O.M., 2009. Eisenia gordejeffi Michaelsen, 1899. In Akimov, I.A. (ed.). Red data book of Ukraine. Animals. Kyiv: Global Consulting, p. 15. Search in Google Scholar

Pokarzhevskii, A.D., 1996. The problem of scale in bio-indication of soil contamination. In Krivolutsky, D.A., van Straalen, N.M. (eds). Bioindicator systems for soil pollution. Dordrecht: Kluwer Acad. Publ., p. 111–121. https://doi.org/10.1007/978-94-009-1752-1_10 Search in Google Scholar

Pokarzhevskii, A.D., Krivolutskii, D.A., 1997. Problems of estimating and maintaining biodiversity of soil biota in natural and agroecosystems: a case study of chernozem soil. Agriculture, Ecosystems & Environment, 62: 127–133. https://doi.org/10.1016/S0167-8809(96)01139-5 Search in Google Scholar

Pokryszko, B.M., Maltz, T.K., Cameron, R.A.D., 2004. Cepaea vindobonensis (Férussac,1821) in the Pieniny Mts. Folia Malacologica, 12: 153–156. https://doi.org/10.12657/folmal.012.013 Search in Google Scholar

Pollierer, M.M., Klarner, B., Ott, D., Digel, C., Ehnes, R.B., Eitzinger, B., Erdmann, G., Brose, U., Maraun, M., Scheu, S., 2021. Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia, 196: 195–209. https://doi.org/10.1007/s00442-021-04910-1 Search in Google Scholar

R Core Team, 2020. R: a language and environment for statistical computing. [online]. [cit. 2022-06-21].Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/ Search in Google Scholar

Richards, K., Brasington, J., Hughes, F., 2002. Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biology, 47: 559–579. https://doi.org/10.1046/j.1365-2427.2002.00920.x Search in Google Scholar

Rodrigo-Comino, J., Keshavarzi, A., Senciales-González, J. M., 2021. Evaluating soil quality status of fluvisols at the regional scale: A multidisciplinary approach crossing multiple variables. River Research and Applications, 1–15. https://doi.org/10.1002/rra.3865 Search in Google Scholar

Rosa, M.G. da, Klauberg Filho, O., Bartz, M.L.C., Mafra, Á.L., Sousa, J.P.F.A. de, Baretta, D., 2015. Macrofauna Edáfica e Atributos Físicos e Químicos em Sistemas de Uso do Solo no Planalto Catarinense [Soil macrofauna and physical and chemical properties under soil man agement systems in the Santa Catarina Highlands, Brazil]. Revista Brasileira de Ciência do Solo, 39: 1544–1553. https://doi.org/10.1590/01000683rbcs20150033 Search in Google Scholar

Rozanov, B.G., 2004. Morfologiya pochv [Soil morphology]. Moskva: Akademicheskiy proekt. 432 p Search in Google Scholar

Ruiz, S.A., Or, D., 2018. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. Journal of The Royal Society Interface, 15: 20180127. https://doi.org/10.1098/rsif.2018.0127 Search in Google Scholar

Saint-Laurent, D., Paradis, R., Drouin, A., Gervais-Beaulac, V., 2016. Impacts of floods on organic arbon concentrations in alluvial soils along hydrological gradients using a figital elevation model (DEM). Water, 8: 208. https://doi.org/10.3390/w8050208 Search in Google Scholar

Salomé, C., Guenat, C., Bullinger-Weber, G., Gobat, J.M., Le Bayon, R.C., 2011. Earthworm communities in alluvial forests: influence of altitude, vegetation stages and soil parameters. Pedobiologia, 54. https://doi.org/10.1016/j.pedobi.2011.09.012 Search in Google Scholar

Savinov, N.O., 1936. Fizika pochv [Soil physics]. Moscow: Sielchozgiz Press.. Search in Google Scholar

Schindler, S., Kropik, M., Euller, K., Bunting, S.W., Schulz-Zunkel, C., Hermann, A., Hainz-Renetzeder, C., Kanka, R., Mauerhofer, V., Gasso, V., Krug, A., Lauwaars, S.G., Zulka, K., Henle, K., Hoffmann, M., Biró, M., Essl, F., Jaquier, S., Balázs, L., Borics, G., Hudin, S., Damm, C., Pusch, M., van der Sluis, T., Sebesvari, Z., Wrbka, T., 2013. Floodplain management in temperate regions: is multifunctionality enhancing biodiversity? Environmental Evidence, 2: 10. https://doi.org/10.1186/2047-2382-2-10 Search in Google Scholar

Schindler, S., O’Neill, F.H., Biró, M., Damm, C., Gasso, V., Kanka, R., van der Sluis, T., Krug, A., Lauwaars, S.G., Sebesvari, Z., Pusch, M., Baranovsky, B., Ehlert, T., Neukirchen, B., Martin, J.R., Euller, K., Mauerhofer, V., Wrbka, T., 2016. Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodiversity and Conservation, 25: 1349–1382. https://doi.org/10.1007/s10531-016-1129-3 Search in Google Scholar

Serra-Llobet, A., Jähnig, S.C., Geist, J., Kondolf, G.M., Damm, C., Scholz, M., Lund, J., Opperman, J.J., Yarnell, S.M., Pawley, A., Shader, E., Cain, J., Zingraff-Hamed, A., Grantham, T.E., Eisenstein, W., Schmitt, R., 2022. Restoring rivers and floodplains for habitat and flood risk reduction: experiences in multi-benefit floodplain fanagement from California and Germany. Frontiers in Environmental Science, 9: 778568 https://doi.org/10.3389/fenvs.2021.778568 Search in Google Scholar

Sharma, D.K., Tomar, S., Chakraborty, D., 2017. Role of earthworm in improving soil structure and functioning. Current Science, 113: 1064. https://doi.org/10.18520/cs/v113/i06/1064-1071 Search in Google Scholar

Shelford, V.E., 1912. Ecological succession. The Biological Bulletin, 23: 331–370. https://doi.org/10.2307/1536007 Search in Google Scholar

Shrestha, J., Niklaus, P.A., Pasquale, N., Huber, B., Barnard, R.L., Frossard, E., Schleppi, P., Tockner, K., Luster, J., 2014. Flood pulses control soil nitrogen cycling in a dynamic river floodplain. Geoderma, 228–229: 14–24. https://doi.org/10.1016/j.geoderma.2013.09.018 Search in Google Scholar

Simioni, J.P., Guasselli, L.A., Silva, T.S. da, 2019. Shifting habitat mosaic: identification and mapping. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 14: 1. https://doi.org/10.4136/ambi-agua.2242 Search in Google Scholar

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79: 7–31. https://doi.org/10.1016/j.still.2004.03.008 Search in Google Scholar

Sofo, A., Mininni, A.N., Ricciuti, P., 2020. Soil macrofauna: a key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10: 456. https://doi.org/10.3390/agronomy10040456 Search in Google Scholar

Stanford, J.A., Lorang, M.S., Hauer, F.R., 2005. The shifting habitat mosaic of river ecosystems. SIL Proceedings, 1922-2010, 29: 123–136. https://doi.org/10.1080/03680770.2005.11901979 Search in Google Scholar

Statistics. Data Analysis Software System 2014. Search in Google Scholar

Staudacher, K., Schallhart, N., Pitterl, P., Wallinger, C., Brunner, N., Landl, M., Kromp, B., Glauninger, J., Traugott, M., 2013. Occurrence of Agriotes wireworms in Austrian agricultural land. Journal of Pest Science, 86: 33–39. https://doi.org/10.1007/s10340-011-0393-y Search in Google Scholar

Stockmann, U., Minasny, B., McBratney, A.B., 2014. How fast does soil grow? Geoderma, 216: 48–61. https://doi.org/10.1016/j.geoderma.2013.10.007 Search in Google Scholar

Talbot, C.J., Bennett, E.M., Cassell, K., Hanes, D.M., Minor, E.C., Paerl, H., Raymond, P.A., Vargas, R., Vidon, P.G., Wollheim, W., Xenopoulos, M.A., 2018. impact of flooding on aquatic ecosystem services. Biogeochemistry, 141: 439–461. https://doi.org/10.1007/s10533-018-0449-7 Search in Google Scholar

Tanner, J.E., Hughes, T.P., Connell, J.H., 1996. The role of history in community dynamics: a modelling approach. Ecology, 77: 108–117. https://doi.org/10.2307/2265660 Search in Google Scholar

Tarashuko, M.V., 2009. Scutigera coleoptrata (Linnaeus, 1758). In Akimov, I.A. (ed.). Red data book of Ukraine. Animals. Kyiv: Global Consulting, p. 59. Search in Google Scholar

Thiele, H.-U., 1977. The differences in distribution of carabids in the environment: reactions to abiotic factors and their significance in habitat affinity. In Carabid beetles in their environments. Berlin, Heidelberg: Springer, p. 172–224. https://doi.org/10.1007/978-3-642-81154-8_6 Search in Google Scholar

Thoms, M.C., 2003. Floodplain–river ecosystems: lateral connections and the implications of human interference. Geomorphology, 56: 335–349. https://doi.org/10.1016/S0169-555X(03)00160-0 Search in Google Scholar

Tiunov, A., 2000. Microbial biomass, biovolume and respiration in Lumbricus terrestris L. cast material of different age. Soil Biology and Biochemistry, 32: 265–275. https://doi.org/10.1016/S0038-0717(99)00165-0 Search in Google Scholar

Tiunov, A.V., Scheu, S., 1999. Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biology and Biochemistry, 31: 2039–2048. https://doi.org/10.1016/S0038-0717(99)00127-3 Search in Google Scholar

Tockner, K., Bunn, S.E., Gordon, C., Naiman, R.J., Quinn, G.P., Stanford, J.A., 2010. Flood plains: critically threatened ecosystems. In Polunin, N.V.C. (ed.). Aquatic ecosystems. Cambridge: Cambridge University Press, p. 45–62. https://doi.org/10.1017/CBO9780511751790.006 Search in Google Scholar

Umerova, А., Zhukov, O., Yorkina, N., 2022. The soil aggregate structure as a marker of the ecological niche of the micromollusc Vallonia pulchella. Journal of Water and Land Development, 52: 66–74. https://doi.org/10.24425/jwld.2021.139945 Search in Google Scholar

van Looy, K., Vanacker, S., Jochems, H., de Blust, G., Dufrêne, M., 2005. Ground beetle habitat templets and riverbank integrity. River Research and Applications, 21: 1133–1146. https://doi.org/10.1002/rra.872 Search in Google Scholar

Vári, Á., Kozma, Z., Pataki, B., Jolánkai, Z., Kardos, M., Decsi, B., Pinke, Z., Jolánkai, G., Pásztor, L., Condé, S., Sonderegger, G., Czúcz, B., 2022. Disentangling the ecosystem service ‘flood regulation’: mechanisms and relevant ecosystem condition characteristics. Ambio, 51: 1855–1870. https://doi.org/10.1007/s13280-022-01708-0 Search in Google Scholar

Veneman, P.L.M., Bodine, S.M., 1982. Chemical and morphological soil characteristics in a New England drainage-toposequence. Soil Science Society of America Journal, 46: 359–363. https://doi.org/10.2136/sssaj1982.03615995004600020029x Search in Google Scholar

Voronov, A.T. 1973. Geobotany. Moskva: Vysshaya shkola. 1973 Search in Google Scholar

Wade, A.M., Richter, D.D., Cherkinsky, A., Craft, C.B., Heine, P.R., 2020. Limited carbon contents of centuries old soils forming in legacy sediment. Geomorphology, 354: 107018. https://doi.org/10.1016/j.geomorph.2019.107018 Search in Google Scholar

Warren, M.W., Zou, X., 2002. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management, 170: 161–171. https://doi.org/10.1016/S0378-1127(01)00770-8 Search in Google Scholar

WRB, 2015. World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO. Search in Google Scholar

Wuddivira, M.N., Camps-Roach, G., 2007. Effects of organic matter and calcium on soil structural stability. European Journal of Soil Science, 58: 722–727. https://doi.org/10.1111/j.1365-2389.2006.00861.x Search in Google Scholar

Xu, L., Du, H., Zhang, X., 2019. Spatial distribution characteristics of soil salinity and moisture and its influence on agricultural irrigation in the Ili River Valley, China. Sustainability, 11: 7142. https://doi.org/10.3390/su11247142 Search in Google Scholar

Yakovenko, V., 2017. Fractal properties of coarse/fine-related distribution in forest soils on colluvium. In Soil science working for a living. Cham: Springer International Publishing, p. 29–42. https://doi.org/10.1007/978-3-319-45417-7_3 Search in Google Scholar

Yakovenko, V., Zhukov, O., 2021. Zoogenic structure aggregation in steppe and forest soils. In Dmytruk, Y., Dent, D. (eds). Soils under stress. Cham: Springer International Publishing, p. 111–127. https://doi.org/10.1007/978-3-030-68394-8_12 Search in Google Scholar

Yakovenko, V.M., Dubinina, J.J., Zhukova, Y.O., 2019. Spatial heterogeneity of the physical properties of the soil in the floodplain of the small river. Agrology, 2: 219‒228. https://doi.org/10.32819/019031 Search in Google Scholar

Yorkina, N., Maslikova, K., Kunah, O., Zhukov, O., 2018. Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17: 29–45. Search in Google Scholar

Yu, J., Li, Y., Han, G., Zhou, D., Fu, Y., Guan, B., Wang, G., Ning, K., Wu, H., Wang, J. 2014. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environmental Earth Sciences, 72: 589–599. https://doi.org/10.1007/s12665-013-2980-0 Search in Google Scholar

Zhukov, O.V., Bondarev, D.L., Yermak, Y.I., Fedushko, M.P., 2019. Effects of temperature patterns on the spawining phenology and niche overlap of fish assemblages in the water bodies of the Dnipro River basin. Ecologica Montenegrina, 22: 177–203. Search in Google Scholar

Zhukov, O. V., Kovalenko, D. V., Kramarenko, S.S., Kramarenko, A.S., 2019. Analysis of the spatial distribution of the ecological niche of the land snail Brephulopsis cylindrica (Stylommatophora, Enidae) in technosols. Biosystems Diversity, 27: 62–68. https://doi.org/10.15421/011910 Search in Google Scholar

Zhukov, O. V., Kunah, O.M., Dubinina, Y.Y., Fedushko, M.P., Kotsun, V.I., Zhukova, Y.O., Potapenko, O. V., 2019. Tree canopy affects soil macrofauna spatial patterns on broad- and meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica, 46: 101–114. https://doi.org/10.2478/foecol-2019-0013 Search in Google Scholar

Zhukov, O. V., Kunah, O.M., Dubinina, Y.Y., Novikova, V.O., 2018. The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river. Folia Oecologica, 45: 8–23. https://doi.org/10.2478/foecol-2018-0002 Search in Google Scholar

Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A., Umerova, A., 2021. Temporal aspect of the terrestrial invertebrate response to moisture dynamic in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands. Ekológia (Bratislava), 40: 178–188. https://doi.org/10.2478/eko-2021-0020 Search in Google Scholar

Zulu, S.G., Motsa, N.M., Sithole, N.J., Magwaza, L.S., Ncama, K., 2022. Soil macrofauna abundance and taxonomic richness under long-term no-till conservation agriculture in a aemi-arid environment of South Africa. Agronomy, 12: 722. https://doi.org/10.3390/agronomy12030722 Search in Google Scholar

eISSN:
1338-7014
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other, Plant Science, Zoology, Ecology