Accesso libero

Functional diversity of soil microorganisms in the conditions of an ecological farming system

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Act No. 220/2004 Coll. on protection and use of agricultural soil (in Slovak Zákon č. 220/2004 o ochrane a využívaní poľnohospodárskej pôdy). National Council of the Slovak Republic.Search in Google Scholar

Avellaneda-Torres, L.M., León Sicard, T.E., Torres Rojas, E., 2018. Impact of potato cultivation and cattle farming on physicochemical parameters and enzymatic activities of Neotropical high Andean Páramo ecosystem soils. Science of the Total Environment, 631–632: 1600–1610.10.1016/j.scitotenv.2018.03.137Search in Google Scholar

Bardgett, R.D., 2005. The biology of soil. Oxford: Oxford University Press. 242 p.10.1093/acprof:oso/9780198525035.001.0001Search in Google Scholar

Bardgett, R.D., Van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature, 515: 505–511.10.1038/nature13855Search in Google Scholar

Bender, S.F., Wang, C., Van der Heijden, M.G.A., 2016. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 31 (6): 440–452.10.1016/j.tree.2016.02.016Search in Google Scholar

Bondi, G., Creamer, R., Ferrari, Fenton, O., Wall, D., 2018. Using machine learning to predict soil bulk density on the basis of visual parameters: tools for in-field and post-field evaluation. Geoderma, 318: 137–147.10.1016/j.geoderma.2017.11.035Search in Google Scholar

Choudhary, M., Jat, H.S., Datta, A., Yadav, A.K., Sapkot, T.B., Mondal, S., Meena, R.P., Sharma, P.C., Jat, M.L., 2018. Sustainable intensification influences soil quality, biota, and productivity in cereal-based agroecosystems. Applied Soil Ecology, 126: 189–198.10.1016/j.apsoil.2018.02.027Search in Google Scholar

Čurlík, J., Šefčík, P., 1999. Geochemický atlas Slovenskej republiky [Geochemical atlas of the Slovak Republic]. Bratislava: Ministerstvo životného prostredia Slovenskej republiky.Search in Google Scholar

Doran, J.W., Zeiss, M.R., 2000. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15 (1): 3–11.10.1016/S0929-1393(00)00067-6Search in Google Scholar

Duguma, L.A, Hager, H., Sieghardt, M., 2010. Effects of land use types on soil chemical properties in smallholder farmers of central highland Ethiopia. Ekológia (Bratislava), 29 (1): 1−14.10.4149/ekol_2010_01_1Search in Google Scholar

Fazekašová, D., 2012. Evaluation of soil quality parameters development in terms of sustainable land use. In Curkovic S. (ed.). Sustainable development – authoritative and leading edge content for environmental management. Rijeka: InTech, p. 435-458.10.5772/48686Search in Google Scholar

Fiala, K., Barančiková, G., Brečková, V., Burik, V., Houšková, B., Chomaničová, A., Kobza, J., Litavec, T., Makovniková, L., Pechova, B., Varadiová, D., 1999. Záväzné metódy rozborov pôd. Čiastkový monitorovací system – Pôda [Obligatory methods of soil analysis. Partial monitoring system – Soil]. Bratislava: VÚPOP. 142 p.Search in Google Scholar

Gałązka A., Gawryjołek K., Grządziel J., Frąc M., Księżak J., 2017. Microbial community diversity and the interaction of soil under maize growth in different cultivation techniques. Plant, Soil and Environment, 63: 264–270.10.17221/171/2017-PSESearch in Google Scholar

Gałązka A., Gawryjołek K., Grządziel J., Księżak J., 2017. Effect of different agricultural management practices on soil biological parameters including glomalin fraction. Plant, Soil and Environment, 63: 300–306.10.17221/207/2017-PSESearch in Google Scholar

Garland, J.L., 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbial Ecology, 24: 289–300.10.1111/j.1574-6941.1997.tb00446.xSearch in Google Scholar

Garland, J.L., Mills, A.L., 1991. Classification and char-acterisation of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source-utilization. Applied and Environmental Microbiology, 57: 2351–2359.10.1128/aem.57.8.2351-2359.199118357516348543Search in Google Scholar

Gömöryová, E., Tóthová, S., Pichler, V., Homolák, M., Kriššák, V., Gömöry, D., 2016. Wood ash effect on chemical and microbiological properties of topsoil in a Norway spruce stand one year after the treatment. Folia Oecologica, 43: 156–163.Search in Google Scholar

Hofman, J., Švihálek, J., Holoubek, I., 2004. Evaluation of functional diversity of soil microbial communities – a case study. Plant, Soil and Environment, 50: 141–148.10.17221/4074-PSESearch in Google Scholar

Hohl, H., Varma, A., 2010. Soil: the living matrix. In Sherameti, I., Varma, A. (eds). Soil heavy metals. Soils Biology, 19. Berlin Heidelberg: Springer-Verlag, p. 1–19.10.1007/978-3-642-02436-8_1Search in Google Scholar

Klimatický atlas Slovenska.Climate atlas of Slovakia, 2015. Bratislava: Slovenský hydrometeorologický ústav. 132 p.Search in Google Scholar

Liao, M., Xie, X., 2007. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area, Ecotoxicology and Environmental Safety, 66: 217–223.10.1016/j.ecoenv.2005.12.01316488009Search in Google Scholar

Líška, E., Bajla, J., Candráková, E., Frančák, J., Hrubý, D., Illeš, L., Korenko, M., Nozdrovický, L., Pospišil, R., Špánik, F., Žembery, J., 2008. Všeobecná rastlinná výroba [General crop production]. Nitra: Slovenská poľnohospodárska univerzita. 452 p.Search in Google Scholar

Macci, C., Doni, S., Peruzzi, E., Masciandaro, G., Men-none, C., Ceccanti, B., 2012. Almond tree and organic fertilization for soil quality improvement in southern Italy. Journal of Environmental Management, 95: 215–222.10.1016/j.jenvman.2010.10.05021074934Search in Google Scholar

Makovníková, J., Barančíková, G., Dlapa, P., Dercová, K., 2006. Anorganické kontaminanty v pôdnom ekosystéme [Inorganic contaminants in the soil environment]. Chemické Listy, 100: 424–432.Search in Google Scholar

Mazúr, E., Lukniš, M., 1980. Regionálne geomorfologické členenie SSR [Regional geomorphological division of the Slovak Socialist Republic]. Bratislava: SAV, p. 54–55.Search in Google Scholar

Meena, B.P., Biswas, A.K., Muneshwar Singh, Chaudhary, R.S., Singh, A.B. Das, H., Patra, A.K., 2019. Long-term sustaining crop productivity and soil health in maize–chickpea system through integrated nutrient management practices in Vertisols of central India. Field Crops Research, 232: 62–76.10.1016/j.fcr.2018.12.012Search in Google Scholar

Pagliai, M., Vignozzi, N., 2002. The soil pore system as an indicator of soil quality. Advances in GeoEcology, 35: 71–82.Search in Google Scholar

Premrov, A., Cummins, T., Byrne, K.A., 2017. Bulk-density modelling using optimal power-transformation of measured physical and chemical soil parameters. Geoderma, 314: 205–220.10.1016/j.geoderma.2017.10.060Search in Google Scholar

Romaniuk, R., Giuffre, L., Costantini, A., Bartoloni, N., Nannipieri, P., 2011. A comparison of indexing methods to evaluate quality of soils: The role of soil microbiological properties. Soil Research, 49: 733–741.10.1071/SR11147Search in Google Scholar

Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4 (10): 1340–51.10.1038/ismej.2010.58Search in Google Scholar

Shannon, C.E., 1948. A mathematical theory of communication. Bell System Technical Journal, 27: 379–423.10.1002/j.1538-7305.1948.tb01338.xSearch in Google Scholar

Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., Chu, H., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57: 204–211.10.1016/j.soilbio.2012.07.013Search in Google Scholar

Tischer, S., Tannaberg, H., Guggenberger, G., 2008. Microbial parameters of soils contaminated with heavy metals: assessment for ecotoxicological monitoring. Polish Journal of Ecology, 56: 471–479.Search in Google Scholar

Torsvik, V., Øvreås, L., 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5: 240–245.10.1016/S1369-5274(02)00324-7Search in Google Scholar

Vincent, Q., Leyval, C., Beguiristain, T., Auclerc, A., 2018. Functional structure and composition of Collembola and soil macrofauna communities depend on abiotic parameters in derelict soils. Applied Soil Ecology, 130: 259–270.10.1016/j.apsoil.2018.07.002Search in Google Scholar

Walmsley, A., Sklenička, P., 2017. Various effects of land tenure on soil biochemical parameters under organic and conventional farming − Implications for soil quality restoration. Ecological Engineering, 107: 137–143.10.1016/j.ecoleng.2017.07.006Search in Google Scholar

Yang, Ch., Liu, N., Zhang, Y., 2019. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma, 337: 444–452.10.1016/j.geoderma.2018.10.002Search in Google Scholar

Yao, H., He, Z., Wilson, M.J., Campbell, C.D., 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use, Microbial Ecology, 40: 223–237.10.1007/s00248000005311080380Search in Google Scholar

Zhu, L., Xiao, Q., Shen, Y., Li, S., 2017. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the loess Plateau. Ecotoxicology and Environmental Safety, 144: 578–584.10.1016/j.ecoenv.2017.06.07528688360Search in Google Scholar

eISSN:
1338-7014
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other, Plant Science, Zoology, Ecology