Accesso libero

A Novel Weighted Preference Relation Approach to Detect Outliers in Multi-Criteria Decision Aid Context

 e   
10 giu 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Barnett V, Lewis T. Outliers in statistical data John Wiley and Sons. New York 1994. Search in Google Scholar

Bland J. DG.(1996)‘Statistics notes: measurement error.’ BMJ n.d.;312:1654. Search in Google Scholar

Bolton RJ, Hand DJ. Unsupervised profiling methods for fraud detection. Credit Scoring Credit Control VII 2001:235–55. Search in Google Scholar

Brans J-P, Mareschal B. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis Support Syst 1994;12:297–310. https://doi.org/https://doi.org/10.1016/0167-9236(94)90048-5. Search in Google Scholar

Brans J-P, Vincke P, Mareschal B. How to select and how to rank projects: The PROMETHEE method. Eur J Oper Res 1986;24:228–38. Search in Google Scholar

Breunig MM, Kriegel H-P, Ng RT, Sander J. LOF: identifying density-based local outliers. Proc. 2000 ACM SIGMOD Int. Conf. Manag. data, 2000, p. 93–104. Search in Google Scholar

Dang TT, Ngan HYT, Liu W. Distance-based k-nearest neighbors outlier detection method in large-scale traffic data. 2015 IEEE Int. Conf. Digit. Signal Process., IEEE; 2015, p. 507–10. Search in Google Scholar

Dejaegere G, De Smet Y. Promethee γ: A new Promethee based method for partial ranking based on valued coalitions of monocriterion net flow scores. J Multi-Criteria Decis Anal 2023;30:147–60. Search in Google Scholar

Dekking FM, Kraaikamp C, Lopuhaä HP, Meester LE. A Modern Introduction to Probability and Statistics: Understanding why and how. vol. 488. Springer; 2005. Search in Google Scholar

De Smet Y, Guzmán LM. Towards multicriteria clustering: An extension of the k-means algorithm. Eur J Oper Res 2004;158:390–8. https://doi.org/10.1016/j.ejor.2003.06.012. Search in Google Scholar

De Smet Y, Hubinont J-PP, Rosenfeld J. A note on the detection of outliers in a binary outranking relation. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2017;10173 LNCS:151–9. https://doi.org/10.1007/978-3-319-54157-0_11. Search in Google Scholar

De Smet Y, Nemery P, Selvaraj R. An exact algorithm for the multicriteria ordered clustering problem. Omega 2012;40:861–9. Search in Google Scholar

Ding Q, Katenka N, Barford P, Kolaczyk E, Crovella M. Intrusion as (anti) social communication: characterization and detection. Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov. data Min., 2012, p. 886–94. Search in Google Scholar

Ishizaka A, Nemery P. Multi-attribute utility theory. Multi-Criteria Decis Anal Methods Softw 2013:81–113. Search in Google Scholar

Korhonen P. Interactive methods. Mult Criteria Decis Anal State Art Surv 2005:641–61. Search in Google Scholar

MacQueen J. Some methods for classification and analysis of multivariate observations. Proc. fifth Berkeley Symp. Math. Stat. Probab., vol. 1, Oakland, CA, USA; 1967, p. 281–97. Search in Google Scholar

Mareschal B, Brans J-P. Geometrical representations for MCDA. Eur J Oper Res 1988;34:69–77. https://doi.org/https://doi.org/10.1016/0377-2217(88)90456-0. Search in Google Scholar

Moonesinghe HDK, Tan P-N. Outrank: a graph-based outlier detection framework using random walk. Int J Artif Intell Tools 2008;17:19–36. Search in Google Scholar

Nguyen HV, Ang HH, Gopalkrishnan V. Mining outliers with ensemble of heterogeneous detectors on random subspaces. Database Syst. Adv. Appl. 15th Int. Conf. DASFAA 2010, Tsukuba, Japan, April 1-4, 2010, Proceedings, Part I 15, Springer; 2010, p. 368–83. Search in Google Scholar

Pimentel T, Monteiro M, Veloso A, Ziviani N. Deep active learning for anomaly detection. 2020 Int. Jt. Conf. Neural Networks, IEEE; 2020, p. 1–8. Search in Google Scholar

Rouba B. A net-flow based approach to detect outliers in multicriteria decision problems. Intell Decis Technol 2021;15:239–50. https://doi.org/10.3233/IDT-200046. Search in Google Scholar

Rouba B, Nait-Bahloul S. Towards identifying multicriteria outliers: An outranking relation-based approach. Int J Decis Support Syst Technol 2018;10:27–38. https://doi.org/10.4018/IJDSST.2018070102. Search in Google Scholar

Roy B. Multicriteria methodology for decision aiding. vol. 12. Springer Science & Business Media; 2013. Search in Google Scholar

Roy B. Multicriteria methodology for decision aiding. vol. 12. Springer Science & Business Media; 1996. Search in Google Scholar

Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965;52:591–611. Search in Google Scholar

Tsou Y-L, Chu H-M, Li C, Yang S-W. Robust distributed anomaly detection using optimal weighted one-class random forests. 2018 IEEE Int. Conf. Data Min., IEEE; 2018, p. 1272–7. Search in Google Scholar

Vincke P. Multicriteria decision-aid. John Wiley & Sons; 1992. Search in Google Scholar

World Happiness Report 2015. https://www.kaggle.com/datasets/mathurinache/world-happiness-report?resource=download&select=2015.csv. Search in Google Scholar

Yang X, Latecki LJ, Pokrajac D. Outlier detection with globally optimal exemplar-based GMM. Proc. 2009 SIAM Int. Conf. data Min., SIAM; 2009, p. 145–54. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Informatica, Intelligenza artificiale, Software Development