INFORMAZIONI SU QUESTO ARTICOLO

Cita

Adleman, L., Molecular computation of solutions to combinatorial problems, Science 266, 1021–1024 (1994).Search in Google Scholar

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B., Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, Upper Saddle River, NJ, 1993.Search in Google Scholar

Benenson, Y., DNA computes a square root, Nature Nanotechnology 6, 465–467 (2011).Search in Google Scholar

Błażewicz, J., Formanowicz, P., Urbaniak, R., DNA Based Algorithms for Some Scheduling Problems, In: Raidl, G. et al. Applications of Evolutionary Computing. EvoWorkshops 2003. LNCS 2611, Springer, Berlin, Heidelberg, 673–683 (2003).Search in Google Scholar

Braich, R. S., Chelyapov, N., Johnson, C., Rothemund, P. W. K., and Adleman, L., Solution of a 20-variable 3-SAT problem on a DNA compute, Science 296, 499–502 (2002).Search in Google Scholar

Condon, A., Designed DNA molecules: principles and applications of molecular nanotechnology, Nat. Rev. Genet. 7, 565–575 (2006).Search in Google Scholar

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to Algorithms (2nd edition). MIT Press, Cambridge/MA, 2001.Search in Google Scholar

Darehmiraki M., A New Solution for Maximal Clique Problem based Sticker Model, BioSystems 95, 145–149 (2009).Search in Google Scholar

Dodge, M., S. A. MirHassani, S. A., Hooshmand, F., Solving two-dimensional cutting stock problem via a DNA computing algorithm, Natural Computing 20, 145–159 (2021).Search in Google Scholar

Eghdami, H., Darehmiraki, M., Application of DNA computing in graph theory, Artificial Intelligence Review 38, 223–235 (2012).Search in Google Scholar

Elias, P., Feinstein, A., and Shannon, C. E., A note on the maximum flow through a network, IEEE Trans. Info. Theory. 2, 117–119 (1956).Search in Google Scholar

Faulhammer, D., Cukras, A. R., Lipton, R. J., and Landweber, L. F., Molecular computation: RNA solutions to chess problems, Proc. of Natl. Acad. Sci. USA 97, 1385–1389 (2000).Search in Google Scholar

Ford, L. R., Jr. and Fulkerson, D. R., Maximal flow through a network, Canad. J. Mathem. 8, 399–404 (1956).Search in Google Scholar

Han, A. and Zhu, D., DNA encoding method of weight for Chinese postman problem, In Proc. of IEEE Congress on Evolutionary Computation, IEEE Press, pp. 681–686 (2006).Search in Google Scholar

Ibrahim, Z., Towards solving weighted graph problems by direct-proportional length-based DNA computing, Research Report, IEEE Computational Intelligence Society (CIS) Walter J. Karplus Summer Research Grant (2004).Search in Google Scholar

Jeng, D. J.-F., Kim, I., and Watada, J., Bio-soft computing with fixed-length DNA to a group control optimization problem, Soft Computing 12, 223–228 (2008).Search in Google Scholar

Jungnickel, D., Graphs, Networks and Algorithms, Vol. 5 (2nd edition), Springer, Berlin (2005).Search in Google Scholar

Lee, J. Y., Shin, S. Y., Augh, S. J., Park, T. H., and T., Z. B., Temperature gradient-based DNA computing for graph problems with weighted edges, In DNA8: 8th Intern Workshop on DNA Based Computers, LNCS 2568, Springer, London, pp. 73–84 (2003).Search in Google Scholar

Lipton, R. J., DNA solution of hard computational problems, Science 268, 524–548 (1995).Search in Google Scholar

Liu, Q., Wang, L., Frutos, A. G., Condon, A. E., Corn, R. M., and Smith, L. M., DNA computing on surfaces, Nature 403, 175–179 (2000).Search in Google Scholar

Liu, Y., Xu, J., Pan, L., and Wang, S., DNA solution of a graph coloring problem, J. Chem. Inf. Comput. Sci. 42, 524–528 (2002).Search in Google Scholar

Martínez-Pérez, I. M., Gong, Z., Ignatova, Z., and Zimmermann, K. H., Solving the maximum clique problem via DNA hairpin formation, Technical Report 06.3, Computer Engerneering Department TUHH, Germany (2006).Search in Google Scholar

Nagy, N. and Akl, S. G., Aspects of biomolecular computing, Parallel. Proc. Lett. 17, 185–211 (2007).Search in Google Scholar

Narayanan, A. and Zorbalas, S., DNA algorithms for computing shortest paths In Proc. of Genetic Programming, 718–723 (1998).Search in Google Scholar

Ouyang, Q., Kaplan, P. D., Liu, S., and Libchaber, A., DNA solution of the maximal clique problem, Science 278, 446–449 (1997).Search in Google Scholar

Păun, G., Rozenberg, G., and Salomaa, A., DNA Computing: new computing paradigms. Springer, Berlin (1998).Search in Google Scholar

Ran, T., Kaplan, S., Shapiro, E., Molecular implementation of simple logic programs, Nature Nanotechnology 4, 642–648 (2009).Search in Google Scholar

Razzazi, M. and Roayaei, M., Using sticker model of DNA computing to solve domatic partition, kernel and induced path problems, Information Sciences 181, 3581–3600 (2011).Search in Google Scholar

Ren, X., Wang, X., Wang, Z., Wu, T., Parallel DNA Algorithms of Generalized Traveling Salesman Problem-Based Bioinspired Computing Model, International Journal of Computational Intelligence Systems 14, 228–237 (2021).Search in Google Scholar

Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N. V., Goodman, M. F., Rothemund, P. W. K., Adleman, L. M., A sticker-based model for DNA computation, Journal of Computational Biology 5, 615–629 (1998).Search in Google Scholar

Sager, J. and Stefanovic, D., Designing nucleotide sequences for computation: A survey of constraints, In DNA11: 11th Intern Workshop on DNA Based Computers, LNCS 3892, Springer, London, pp. 275–289 (2006).Search in Google Scholar

Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., and Hagiya, M., Molecular computation by DNA hairpin formation, Science 288, 1223–1226 (2000).Search in Google Scholar

Stojanovic, M. N. and Stefanovic, D., A deoxyribozyme-based molecular automaton, Nat. Biotechnol. 21, 1069–1074 (2003).Search in Google Scholar

Tian, X., Liu, X., Zhang, H., Sun, M., Zhao, Y., A DNA algorithm for the job shop scheduling problem based on the Adleman-Lipton model, PLOS ONE 15, e0242083 (2020).Search in Google Scholar

Woods, D., Doty, D., Myhrvold, C., Hui, J., Zhou, F., Yin, P., Winfree, E., Diverse and robust molecular algorithms using reprogrammable DNA self-assembly, Nature 567, 366-372 (2019).Search in Google Scholar

Xu, J., Qiang, X., Zhang, K., Zhang, C., Yang, J., A DNA computing model for the graph vertex coloring problem based on a probe graph, Engineering 4, 61–77 (2018).Search in Google Scholar

Yamamoto, M., Matsuura, N., Shiba, T., Kawazoe, Y., and Ohuchi, A., Solutions of shortest path problems by concentration control, In DNA7: 7th Intern Workshop on DNA Based Computers, LNCS 2340, Springer, London, 203–212 (2002).Search in Google Scholar

Yang, J., Yin, Z., Tang, Z., Huang, K., Cui, J., Yang, X., Search computing model for the knapsack problem based on DNA origami, Materials Express 9, 553–562 (2019).Search in Google Scholar

Zimmermann, K.-H., Efficient DNA sticker algorithms for NP-complete graph problems, newblock Computer Physics Communications 144, 297–309 (2002).Search in Google Scholar

eISSN:
2300-3405
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Computer Sciences, Artificial Intelligence, Software Development