1. bookVolume 46 (2021): Edizione 1 (March 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2300-3405
Prima pubblicazione
24 Oct 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

An Integration of Neural Network and Shuffled Frog-Leaping Algorithm for CNC Machining Monitoring

Pubblicato online: 01 Mar 2021
Volume & Edizione: Volume 46 (2021) - Edizione 1 (March 2021)
Pagine: 27 - 42
Ricevuto: 13 Dec 2019
Accettato: 14 Apr 2020
Dettagli della rivista
License
Formato
Rivista
eISSN
2300-3405
Prima pubblicazione
24 Oct 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

[1] Ahmadi, M.A., Shadizadeh, S.R., Permeability prediction of carbonate reservoir by combining neural network and shuffled frog-leaping, Journal of American Science, 8, 2, 2012, 529-534. Search in Google Scholar

[2] Alencar, A.S.C., Rocha Neto, A.R., Gomes, L.P.P., A new pruning method for extreme learning machines via genetic algorithms, Applied Soft Computing, 44, 2016, 101-107.10.1016/j.asoc.2016.03.019 Search in Google Scholar

[3] Alinaghian, M., Tirkolaee, E. B., Dezaki, Z. K., Hejazi, S. R., and Ding, W. An augmented Tabu search algorithm for the green inventory-routing problem with time windows. Swarm and Evolutionary Computation, 60, 2021, 100802.10.1016/j.swevo.2020.100802 Search in Google Scholar

[4] Amiri, B., Fathian, M., Maroosi, A., Application of shuffled frog-leaping algorithm on clustering, The International Journal of Advanced Manufacturing Technology, 45, 1-2, 2009, 199-209.10.1007/s00170-009-1958-2 Search in Google Scholar

[5] Amirkhani, S., Nasirivatan, S.H., Kasaeian, A.B., Hajinezhad, A., ANN and ANFIS models to predict the performance of solar chimney power plants, Renewable Energy, 83, 2015, 597-607.10.1016/j.renene.2015.04.072 Search in Google Scholar

[6] Anicic, O., Jović, S., Skrijelj, H., and Nedić, B., Prediction of laser cutting heat affected zone by extreme learning machine, Optics and Lasers in Engineering, 88, 2017, 1-4.10.1016/j.optlaseng.2016.07.005 Search in Google Scholar

[7] Bouyer, A., An optimized k-harmonic means algorithm combined with modified particle swarm optimization and Cuckoo Search algorithm, Foundations of Computing and Decision Sciences, 41, 2, 2016, 99-121.10.1515/fcds-2016-0006 Search in Google Scholar

[8] Caesarendra, W., Kosasih, B., Tieu, A.K, Zhu, H., Moodie, C.A.S., Zhu, Q., Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing, Mechanical Systems and Signal Processing, 72, 2016, 134–159.10.1016/j.ymssp.2015.10.020 Search in Google Scholar

[9] Chen, H. C., Lin, J. C., Yang, Y. K., & Tsai, C. H., Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach, Expert Systems with Applications, 37, 10, 2010, 7147-7153.10.1016/j.eswa.2010.04.020 Search in Google Scholar

[10] Cheng, X., Zhang, X., Zhao, L., Deng, A., Bao, Y., Liu, Y., Jiang, Y., The application of Shuffled Frog Leaping Algorithm to Wavelet Neural Networks for acoustic emission source location, Comptes Rendus Mecanique, 342, 2014, 229-233.10.1016/j.crme.2013.12.006 Search in Google Scholar

[11] Dai, Y., and Zhu, K., A machine vision system for micro-milling tool condition monitoring, Precision Engineering, 52, 2018, 183-191.10.1016/j.precisioneng.2017.12.006 Search in Google Scholar

[12] Deniz, E., Aydogmus, O., Aydogmus, Z., Implementation of ANN-based Selective Harmonic Elimination PWM using Hybrid Genetic Algorithm-based optimization, Measurement, 85, 2016, 32-42.10.1016/j.measurement.2016.02.012 Search in Google Scholar

[13] Ding, Y., Fu, X., Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm, Neuro Computing, 188, 2016, 233-238.10.1016/j.neucom.2015.01.106 Search in Google Scholar

[14] Downey, J., and Raghavendra, R., Comparison and analysis of audible sound energy emissions during single point machining of HSTS with PVD TiCN cutter insert across full tool life, Wear, 313, 1-2, 2014, 53-62.10.1016/j.wear.2014.02.004 Search in Google Scholar

[15] Ernst, R., Zwimpfer, F., and Dual, J., One sensor acoustic emission localization in plates, Ultrasonics, 64, 2016, 139-150.10.1016/j.ultras.2015.08.01026372509 Search in Google Scholar

[16] Eusuff, M., Lansey, K.E., Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization, Engineering Optimization, 38, 2, 2006, 129-154.10.1080/03052150500384759 Search in Google Scholar

[17] Garcia-Plaza, E., Nunez, J.P., Salgado, D.R., Camber, I., Herrera Olivenz, A.J. M, Garcia Sanz Calcedo J., Surface Finish Monitoring in Taper Turning CNC Using Artificial Neural Network and Multiple Regression Methods. Procedia Engineering, 63, 2013, 599-607.10.1016/j.proeng.2013.08.245 Search in Google Scholar

[18] Goli, A., Zare, H.K., Tavakkoli-Moghaddam, R., and Sadeghieh, A. Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem Case study: The dairy products industry. Computers and Industrial Engineering, 137, 2019, 106090.10.1016/j.cie.2019.106090 Search in Google Scholar

[19] Guo, Y.B., Ammula, S.C., Real-time acoustic emission monitoring for surface damage in hard machining, International Journal of Machine Tools and Manufacture, 45, 2005, 1622-1627.10.1016/j.ijmachtools.2005.02.007 Search in Google Scholar

[20] Heck, B.V., Yoon, J., He, D., Low speed bearing fault diagnosis using acoustic emission sensors, Applied Acoustics, 105, 2016, 35-44.10.1016/j.apacoust.2015.10.028 Search in Google Scholar

[21] Hekmati, A., Proposed method of partial discharge allocation with acoustic emission sensors within power transformers, Applied Acoustics, 100, 2015, 26-33.10.1016/j.apacoust.2015.07.011 Search in Google Scholar

[22] Jabha, D.F., Selvi, K., Joselin, R., A new approach for the failure prediction in XLPE power cables using acoustic emission technique, International Journal of Electrical Power and Energy Systems, 81, 2016, 336-345.10.1016/j.ijepes.2016.02.019 Search in Google Scholar

[23] Khehra, B.S., Pharwaha, A.P.S., Classification of Clustered Microcalcifications using MLFFBP-ANN and SVM, Egyptian Informatics Journal, 17, 1, 2016, 11-20.10.1016/j.eij.2015.08.001 Search in Google Scholar

[24] Lauro, H.C., Brandao, L.C., Baldo D, Reis R.A, Davim J.P., Monitoring and processing signal applied in machining processes – A review, Measurement, 58, 2014, 73–86.10.1016/j.measurement.2014.08.035 Search in Google Scholar

[25] Liao, Z., and Axinte, D. A., On monitoring chip formation, penetration depth and cutting malfunctions in bone micro-drilling via acoustic emission, Journal of Materials Processing Technology, 229, 2016, 82-93.10.1016/j.jmatprotec.2015.09.016 Search in Google Scholar

[26] Masmoudi S, Mahi A.E, Turki S., Use of piezoelectric as acoustic emission sensor for in situ monitoring of composite structures, Composites Part B, 80, 2015, 307-320.10.1016/j.compositesb.2015.06.003 Search in Google Scholar

[27] Oktem, H., Erzurumlu, T., & Erzincanli, F., Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm, Materials and design, 27, 9, 2006, 735-744.10.1016/j.matdes.2005.01.010 Search in Google Scholar

[28] Pawlak, J., Hercman, H., Numerical correlation of speleothem stable isotope records using a genetic algorithm, Quaternary Geochronology, 33, 2016, 1-12.10.1016/j.quageo.2015.12.005 Search in Google Scholar

[29] Petkovic, D., Shamshirband, S.H., Kamsin, A., Lee M., Anicic, O., Nicolic, V., Survey of the most influential parameters on the wind farm net present value (NPV) by adaptive neuro-fuzzy approach, Renewable and Sustainable Energy Reviews, 57, 2016, 1270-1278.10.1016/j.rser.2015.12.175 Search in Google Scholar

[30] Sangaiah, A.K., Tirkolaee, E.B., Goli, A., and Dehnavi-Arani, S. Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem, Soft Computing, 2019, 1-21.10.1007/s00500-019-04010-6 Search in Google Scholar

[31] Slimani, I., El Farissi, I., and Achchab, S., The Comparison of Neural Networks’ Structures for Forecasting, International Journal of Supply and Operations Management, 4, 2, 2017, 105-114. Search in Google Scholar

[32] Sousa, T., Morais, H., Castro, R., Val, Z., Simulated annealing to handle energy and ancillary services joint management considering electric vehicles, Electric Power Systems Research, 136, 2016, 383-397.10.1016/j.epsr.2016.03.031 Search in Google Scholar

[33] Teti, R, Jemielniak, K., Donnell, J.O., Dornfeld, D., Advanced monitoring of machining operations, CIRP Annals-Manufacturing Technology, 59, 2010, 717–739.10.1016/j.cirp.2010.05.010 Search in Google Scholar

[34] Tirkolaee, E. B., Goli, A., and Weber, G. W. Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Transactions on Fuzzy Systems, 28, 11, 2020, 2772-2783.10.1109/TFUZZ.2020.2998174 Search in Google Scholar

[35] Tirkolaee, E.B., Mahdavi, I., and Esfahani, M.M.S., A robust periodic capacitated arc routing problem for urban waste collection considering drivers and crew’s working time, Waste Management, 76, 2018, 138-146.10.1016/j.wasman.2018.03.015 Search in Google Scholar

[36] Tirkolaee, E.B., Mahmoodkhani, J., Bourani, M.R., and Tavakkoli-Moghaddam, R., A Self-Learning Particle Swarm Optimization for Robust Multi-Echelon Capacitated Location-Allocation-Inventory Problem, Journal of Advanced Manufacturing Systems, 18, 4, 2019, 677-694.10.1142/S0219686719500355 Search in Google Scholar

[37] Venkatesana, T., Sanavullah, M.Y., SFLA approach to solve PBUC problem with emission limitation, International Journal of Electrical Power and Energy Systems, 46, 2013, 1-9.10.1016/j.ijepes.2012.09.006 Search in Google Scholar

[38] Wang, L., Orban, P., Cunningham, A., and Lang, S., Remote real-time CNC machining for web-based manufacturing, Robotics and Computer-Integrated Manufacturing, 20, 6, 2004, 563-571.10.1016/j.rcim.2004.07.007 Search in Google Scholar

[39] Wieczorek, W., Inductive Synthesis of Cover-Grammars with the Help of Ant Colony Optimization, Foundations of Computing and Decision Sciences, 41, 4, 2016, 297-315.10.1515/fcds-2016-0016 Search in Google Scholar

[40] Wu, L., and Zhang, J., The variance-covariance method using IOWGA operator for tourism forecast combination, International Journal of Supply and Operations Management, 1, 2014, 152. Search in Google Scholar

[41] Xiangqian, F, Shaowei H, Jun L, Congji W., Acoustic emission properties of concrete on dynamic tensile test, Construction and Building Materials, 114, 2016, 66-75.10.1016/j.conbuildmat.2016.03.065 Search in Google Scholar

[42] Xu, J., Yamada, K., Seikiya, K., Tanaka, R., and Yamane, Y., Effect of different features to drill-wear prediction with back propagation neural network, Precision Engineering, 38, 4, 2014 791-798.10.1016/j.precisioneng.2014.04.007 Search in Google Scholar

[43] Xu, S.X., Zhao, J., Zhan, J.M., Le, G., Research on a fault monitoring system in free-form surface CNC machining based on wavelet analysis, Journal of Materials Processing Technology, 129, 2002, 588–591.10.1016/S0924-0136(02)00653-2 Search in Google Scholar

[44] Yammani, C.H., Maheswarapu, S., Kumari Matam, S., A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models, International Journal of Electrical Power and Energy Systems, 79, 2016, 120-131.10.1016/j.ijepes.2016.01.003 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo