INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Alder B. J. and Wainwright T. E., Studies in molecular dynamics. I. General method, The Journal of Chemical Physics, vol. 31, pp. 459–466, 1959.10.1063/1.1730376Search in Google Scholar

[2] Aylward N. and Bofinger N., The reactions of methanimine and cyanogen with carbon monoxide in prebiotic molecular evolution on earth., Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life, vol. 31, pp. 481–500, 2001.10.1023/A:1012702913934Search in Google Scholar

[3] Aylward N. and Bofinger N., Possible origin for porphin derivatives in prebiotic chemistry-a computational study., Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life, vol. 35, pp. 345–68, 2005.10.1007/s11084-005-2044-x16228648Search in Google Scholar

[4] Aylward N. and Bofinger N., A plausible prebiotic synthesis of pyridoxal phosphate: vitamin B6 - a computational study., Biophysical chemistry, vol. 123, pp. 113–21, 2006.10.1016/j.bpc.2006.04.01416730878Search in Google Scholar

[5] Barone V., Biczysko M. and Puzzarini C., Quantum Chemistry Meets Spectroscopy for Astrochemistry: Increasing Complexity toward Prebiotic Molecules., Accounts of chemical research, vol. 48, pp. 1413–22, 2015.10.1021/ar5003285Search in Google Scholar

[6] Barucci M. A. et al., MarcoPolo-R near earth asteroid sample return mission, Experimental Astronomy, vol. 33, pp. 645–684, 2012.10.1007/s10686-011-9231-8Search in Google Scholar

[7] Błazewicz J., Formanowicz P., Guinand F. and Kasprzak M., A heuristic managing errors for DNA sequencing., Bioinformatics (Oxford, England), vol. 18, pp. 652–60, 2002.10.1093/bioinformatics/18.5.65212050060Search in Google Scholar

[8] Born M. and Oppenheimer R., Zur Quantentheorie der Molekeln, Annalen der Physik, vol. 389, pp. 457–484, 1927.10.1002/andp.19273892002Search in Google Scholar

[9] Burns L. A., Vázquez-Mayagoitia Á., Sumpter B. G. and Sherrill C. D., Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals, Journal of Chemical Physics, vol. 134, 2011.10.1063/1.354597121361527Search in Google Scholar

[10] Bussi G. and Branduardi D., Free-Energy Calculations with Metadynamics: Theory and Practice, in pp. 1–49, John Wiley & Sons, Ltd, 2015. doi:10.1002/9781118889886.ch1.10.1002/9781118889886.ch1Search in Google Scholar

[11] Car R. and Parrinello M., Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, vol. 55, pp. 2471–2474, 1985.10.1103/PhysRevLett.55.2471Search in Google Scholar

[12] Carota E., Botta G., Rotelli L., Di Mauro E. and Saladino R., Current Advances in Prebiotic Chemistry Under Space Conditions, Current Organic Chemistry, vol. 19, pp. 1963–1979, 2015.10.2174/1385272819666150622175143Search in Google Scholar

[13] Carrascoza Mayén J. F., Rydzewski J., Szostak N., Blazewicz J. and Nowak W., Prebiotic Soup Components Trapped in Montmorillonite Nanoclay Form New Molecules: Car-Parrinello Ab Initio Simulations., Life (Basel, Switzerland), vol. 9, 2019.10.3390/life9020046661712531167366Search in Google Scholar

[14] Casalini T. et al., Molecular Modeling for Nanomaterial-Biology Interactions: Opportunities, Challenges, and Perspectives., Frontiers in bioengineering and biotechnology, vol. 7, pp. 268, 2019.10.3389/fbioe.2019.00268681149431681746Search in Google Scholar

[15] Chyba C. and Sagan C., Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life, Nature, vol. vol. 355 pp. 125–132, 1992.10.1038/355125a011538392Search in Google Scholar

[16] Coveney P. V., Swadling J. B., Wattis J. A. D. and Greenwell H. C., Theory, modelling and simulation in origins of life studies, Chemical Society Reviews, vol. vol. 41 pp. 5430–5446, 2012.10.1039/c2cs35018aSearch in Google Scholar

[17] Cygan R. T., Romanov V. N. and Myshakin E. M., Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field, The Journal of Physical Chemistry C, vol. 116, pp. 13079–13091, 2012.10.1021/jp3007574Search in Google Scholar

[18] Darve E. and Pohorille A., Calculating free energies using average force, Journal of Chemical Physics, vol. 115, pp. 9169–9183, 2001.10.1063/1.1410978Search in Google Scholar

[19] Davis W. L. and McKay C. P., Origins of life: A comparison of theories and application to mars, Origins of Life and Evolution of the Biosphere, vol. 26, pp. 61–73, 1996.10.1007/BF018081608920171Search in Google Scholar

[20] Espinosa-García J. and Corchado J. C., Reliability of the Single-Point Calculation Technique at Characteristic Points of the Potential Energy Surface, J. Phys. Chem, vol. vol. 99 https://pubs.acs.org/sharingguidelines (1995).10.1021/j100021a026Search in Google Scholar

[21] Ferris J. P., Catalysis and Prebiotic Synthesis, Reviews in Mineralogy and Geochemistry, vol. 59, pp. 187–210, 2005.10.2138/rmg.2005.59.8Search in Google Scholar

[22] Ferris J. P., Hill A. R., Liu R. and Orgel L. E., Synthesis of long prebiotic oligomers on mineral surfaces, Nature, vol. 381, pp. 59–61, 1996.10.1038/381059a08609988Search in Google Scholar

[23] Ferus M. et al., High-energy chemistry of formamide: A simpler way for nucleobase formation, Journal of Physical Chemistry A, vol. 118, pp. 719–736, 2014.10.1021/jp411415p24437678Search in Google Scholar

[24] Ferus M. et al., Formation of nucleobases in a Miller-Urey reducing atmosphere., Proceedings of the National Academy of Sciences of the United States of America, vol. 114, pp. 4306–4311, 2017.10.1073/pnas.1700010114Search in Google Scholar

[25] Fock V., Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems, Zeitschrift für Physik, vol. 61, pp. 126–148, 1930.10.1007/BF01340294Search in Google Scholar

[26] Gallet G. A., Pietrucci F. and Andreoni W., Bridging Static and Dynamical Descriptions of Chemical Reactions: An ab Initio Study of CO 2 Interacting with Water Molecules, Journal of Chemical Theory and Computation, vol. 8, pp. 4029–4039, 2012.10.1021/ct300581nSearch in Google Scholar

[27] Ghoshal S., Pramanik A., Biswas S. and Sarkar P., CH 3 NO as a potential intermediate for early atmospheric HCN: a quantum chemical insight, Physical Chemistry Chemical Physics, vol. 21, pp. 25126–25138, 2019.10.1039/C9CP03874DSearch in Google Scholar

[28] Goldman N., Reed E. J., Fried L. E., William Kuo I.-F. and Maiti A., Synthesis of glycine-containing complexes in impacts of comets on early Earth, Nature Chemistry, vol. 2, pp. 949–954, 2010.10.1038/nchem.82720966951Search in Google Scholar

[29] Grimme S., Bannwarth C. and Shushkov P., A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1-86)., Journal of chemical theory and computation, vol. 13, pp. 1989–2009, 2017.10.1021/acs.jctc.7b00118Search in Google Scholar

[30] Hartree D. R., The Wave Mechanics of an Atom with a Non-Coulomb Central Field Part II Some Results and Discussion, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 111–132, 1928.10.1017/S0305004100011920Search in Google Scholar

[31] Huber C. and Wächtershäuser G., Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life., Science (New York, N.Y.), vol. 281, pp. 670–2, 1998.10.1126/science.281.5377.670Search in Google Scholar

[32] Islam S. and Powner M. W., Prebiotic Systems Chemistry: Complexity Overcoming Clutter, Chem, vol. 2, pp. 470–501, 2017.10.1016/j.chempr.2017.03.001Search in Google Scholar

[33] Jamialahmadi M. et al., Molecular structure and vibrational assignments of bis(4-aminopent-3-en-2- onato)copper(II): A detailed density functional theoretical study, Journal of Molecular Structure, vol. 985, pp. 139–147, 2011.10.1016/j.molstruc.2010.10.034Search in Google Scholar

[34] Kawamura K., Konagaya N. and Maruoka Y., Enhancement and inhibitory activities of minerals for alanine oligopeptide elongation under hydrothermal conditions, Astrobiology, vol. 18, pp. 1403–1413, 2018.10.1089/ast.2017.1732Search in Google Scholar

[35] Kühne T. D., Krack M., Mohamed F. R. and Parrinello M., Efficient and accurate carparrinello-like approach to born-oppenheimer molecular dynamics, Physical Review Letters, vol. 98, pp. 066401, 2007.10.1103/PhysRevLett.98.066401Search in Google Scholar

[36] Laio A. and Parrinello M., Escaping free-energy minima, Proceedings of the National Academy of Sciences of the United States of America, vol. 99, pp. 12562–12566, 2002.10.1073/pnas.202427399Search in Google Scholar

[37] Laporte S. et al., Strong electric fields at a prototypical oxide/water interface probed by ab initio molecular dynamics: MgO(001), Physical Chemistry Chemical Physics, vol. 17, pp. 20382–20390, 2015.10.1039/C5CP02097BSearch in Google Scholar

[38] Lelimousin M., Limongelli V. and Sansom M. S. P., Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations., Journal of the American Chemical Society, vol. 138, pp. 10611–22, 2016.10.1021/jacs.6b05602Search in Google Scholar

[39] Liu P., Kim B., Friesner R. A. and Berne B. J., Replica exchange with solute tempering: A method for sampling biological systems in explicit water, Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 13749–13754, 2005.10.1073/pnas.0506346102Search in Google Scholar

[40] Maragliano L. and Vanden-Eijnden E., A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations, Chemical Physics Letters, vol. 426, pp. 168–175, 2006.10.1016/j.cplett.2006.05.062Search in Google Scholar

[41] Mariscal C. et al., Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report, Origins of Life and Evolution of Biospheres, vol. vol. 49 pp. 111–145, 2019.10.1007/s11084-019-09580-xSearch in Google Scholar

[42] Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P. and De Vries A. H., The MARTINI force field: Coarse grained model for biomolecular simulations, Journal of Physical Chemistry B, vol. 111, pp. 7812–7824, 2007.10.1021/jp071097fSearch in Google Scholar

[43] Marrink S. J. et al., Computational Modeling of Realistic Cell Membranes., Chemical reviews, vol. 119, pp. 6184–6226, 2019.10.1021/acs.chemrev.8b00460Search in Google Scholar

[44] Marsili S., Barducci A., Chelli R., Procacci P. and Schettino V., Self-healing umbrella sampling: A non-equilibrium approach for quantitative free energy calculations, Journal of Physical Chemistry B, vol. 110, pp. 14011–14013, 2006.10.1021/jp062755jSearch in Google Scholar

[45] Martínez-Bachs B. and Rimola A., Prebiotic Peptide Bond Formation Through Amino Acid Phosphorylation. Insights from Quantum Chemical Simulations., Life (Basel, Switzerland), vol. 9, 2019.10.3390/life9030075Search in Google Scholar

[46] Martins Z., Price M. C., Goldman N., Sephton M. A. and Burchell M. J., Shock synthesis of amino acids from impacting cometary and icy planet surface analogues, Nature Geoscience, vol. 6, pp. 1045–1049, 2013.10.1038/ngeo1930Search in Google Scholar

[47] Miller S. L., A Production of Amino Acids Under Possible Primitive Earth Conditions, Science, vol. 117, pp. 528 LP – 529, 1953.10.1126/science.117.3046.528Search in Google Scholar

[48] Nagendrappa G., Organic synthesis using clay and clay-supported catalysts, Applied Clay Science, vol. vol. 53 pp. 106–138, 2011.10.1016/j.clay.2010.09.016Search in Google Scholar

[49] Oro J., Chemical evolution and the origin of life., Advances in space research : the official journal of the Committee on Space Research (COSPAR), vol. 3, pp. 77–94, 1983.10.1016/0273-1177(83)90044-3Search in Google Scholar

[50] Pérez-Villa A. et al., Synthesis of RNA Nucleotides in Plausible Prebiotic Conditions from ab Initio Computer Simulations., The journal of physical chemistry letters, vol. 9, pp. 4981–4987, 2018.10.1021/acs.jpclett.8b02077Search in Google Scholar

[51] Pérez-Villa A., Pietrucci F. and Saitta A. M., Prebiotic chemistry and origins of life research with atomistic computer simulations, Physics of Life Reviews, 2018 doi:10.1016/j.plrev.2018.09.004.10.1016/j.plrev.2018.09.00430243920Search in Google Scholar

[52] Ranjan S., Todd Z. R., Sutherland J. D. and Sasselov D. D., Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry, 2018 doi:10.1089/ast.2017.1770.10.1089/ast.2017.1770Search in Google Scholar

[53] Rimola A. et al., Can Formamide Be Formed on Interstellar Ice? An Atomistic Perspective, ACS Earth and Space Chemistry, vol. 2, pp. 720–734, 2018.10.1021/acsearthspacechem.7b00156Search in Google Scholar

[54] Rimola A., Sodupe M. and Ugliengo P., Role of Mineral Surfaces in Prebiotic Chemical Evolution. In Silico Quantum Mechanical Studies., Life (Basel, Switzerland), vol. 9, 2019.10.3390/life9010010Search in Google Scholar

[55] Rosso L., Mináry P., Zhu Z. and Tuckerman M. E., On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles, Journal of Chemical Physics, vol. 116, pp. 4389–4402, 2002.10.1063/1.1448491Search in Google Scholar

[56] Saitta A. M. and Saija F., Miller experiments in atomistic computer simulations, Proceedings of the National Academy of Sciences, vol. 111, pp. 13768–13773, 2014.Search in Google Scholar

[57] Saitta A. M. and Saija F., Miller experiments in atomistic computer simulations, Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 13768–13773, 2014.10.1073/pnas.1402894111Search in Google Scholar

[58] Salomon-Ferrer R., Case D. A. and Walker R. C., An overview of the Amber biomolecular simulation package, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 3, pp. 198–210, 2013.10.1002/wcms.1121Search in Google Scholar

[59] Schrödinger E., What is life? The physical aspect of the living cell and mind, Cambridge University Press Cambridge, 1944.Search in Google Scholar

[60] Schütt K. T., Gastegger M., Tkatchenko A., Müller K.-R. and Maurer R. J., Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions, Nature Communications, vol. 10, pp. 5024, 2019.10.1038/s41467-019-12875-2Search in Google Scholar

[61] Senanayake S. D. and Idriss H., Photocatalysis and the origin of life: Synthesis of nucleoside bases from formamide on TiO2(001) single surfaces, Proceedings of the National Academy of Sciences, vol. 103, pp. 1194–1198, 2006.10.1073/pnas.0505768103Search in Google Scholar

[62] Smith M. D., Rao J. S., Segelken E. and Cruz L., Force-Field Induced Bias in the Structure of Aβ 21–30 : A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields, Journal of Chemical Information and Modeling, vol. 55, pp. 2587–2595, 2015.10.1021/acs.jcim.5b00308Search in Google Scholar

[63] Sowerby S. J. and Heckl W. M., The role of self-assembled monolayers of the purine and pyrimidine bases in the emergence of life, Origins of Life and Evolution of the Biosphere, vol. 28, pp. 283–310, 1998.10.1023/A:1006570726326Search in Google Scholar

[64] Šponer J. E. et al., Prebiotic synthesis of nucleic acids and their building blocks at the atomic level-merging models and mechanisms from advanced computations and experiments, Physical Chemistry Chemical Physics, vol. vol. 18 pp. 20047–20066, 2016.10.1039/C6CP00670ASearch in Google Scholar

[65] Stanton J. F. and Bartlett R. J., The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties, The Journal of Chemical Physics, vol. 98, pp. 7029–7039, 1993.10.1063/1.464746Search in Google Scholar

[66] Stirling A., Rozgonyi T., Krack M. and Bernasconi M., Prebiotic NH3 Formation: Insights from Simulations, Inorganic Chemistry, vol. 55, pp. 1934–1939, 2016.10.1021/acs.inorgchem.5b02911Search in Google Scholar

[67] Sugita Y. and Okamoto Y., Replica-exchange molecular dynamics method for protein folding, Chemical Physics Letters, vol. 314, pp. 141–151, 1999.10.1016/S0009-2614(99)01123-9Search in Google Scholar

[68] Szostak N., Wasik S. and Blazewicz J., Understanding Life: A Bioinformatics Perspective, in European Review, vol. vol. 25 pp. 231–245, Cambridge University Press, 2017.10.1017/S1062798716000570Search in Google Scholar

[69] Tabacchi G., Fabbiani M., Mino L., Martra G. and Fois E., The Case of Formic Acid on Anatase TiO2 (101): Where is the Acid Proton?, Angewandte Chemie (International ed. in English), vol. 58, pp. 12431–12434, 2019.10.1002/anie.201906709Search in Google Scholar

[70] Takahagi W. et al., Peptide Synthesis under the Alkaline Hydrothermal Conditions on Enceladus, ACS Earth and Space Chemistry, vol. 3, pp. 2559–2568, 2019.10.1021/acsearthspacechem.9b00108Search in Google Scholar

[71] Torrie G. M. and Valleau J. P., Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, Journal of Computational Physics, vol. 23, pp. 187–199, 1977.10.1016/0021-9991(77)90121-8Search in Google Scholar

[72] VandeVondele J. and Rothlisberger U., Canonical adiabatic free energy sampling (CAFES): A novel method for the exploration of free energy surfaces, Journal of Physical Chemistry B, vol. 106, pp. 203–208, 2002.10.1021/jp013346kSearch in Google Scholar

[73] Viani A., Gualtieri A. F. and Artioli G., The nature of disorder in montmorillonite by simulation of X-ray powder patterns, American Mineralogist, vol. 87, pp. 966–975, 2002.10.2138/am-2002-0720Search in Google Scholar

[74] Walker M., Harvey A. J. A., Sen A. and Dessent C. E. H., Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions., The journal of physical chemistry. A, vol. 117, pp. 12590–600, 2013.10.1021/jp408166mSearch in Google Scholar

[75] Xu J. et al., A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization., Nature chemistry, vol. 9, pp. 303–309, 2017.10.1038/nchem.2664557653228338689Search in Google Scholar

[76] Yang G., Neretnieks I. and Holmboe M., Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores, The Journal of Chemical Physics, vol. 147, pp. 084705, 2017.10.1063/1.4992001Search in Google Scholar

[77] Zaia D. A. M., Zaia C. T. B. V. and De Santana H., Which amino acids should be used in prebiotic chemistry studies?, Origins of Life and Evolution of Biospheres, vol. vol. 38 pp. 469–488, 2008.10.1007/s11084-008-9150-518925425Search in Google Scholar

[78] Zhao Y. and Truhlar D. G., Density functionals with broad applicability in chemistry., Accounts of chemical research, vol. 41, pp. 157–167, 2008.10.1021/ar700111a18186612Search in Google Scholar

eISSN:
2300-3405
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Computer Sciences, Artificial Intelligence, Software Development