This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Bakuckas, J. J. (2002). Full-Scale testing and analysis of fuselage structure containing multiple cracks, final report (DOT/FAA/AR-01/46). Federal Aviation Administration.BakuckasJ. J. (2002). Full-Scale testing and analysis of fuselage structure containing multiple cracks, final report (DOT/FAA/AR-01/46). Federal Aviation Administration.Search in Google Scholar
Battelle Memorial Institute (Red.). (2015). Metallic materials properties development and standardization MMPDS-10. Federal Aviation Administration.Battelle Memorial Institute (Red.). (2015). Metallic materials properties development and standardization MMPDS-10. Federal Aviation Administration.Search in Google Scholar
Boller, C., & Seeger, T. (2013). Materials data for cyclic loading, part D: Aluminium and titanium alloys (C. Laird, Red.). Elsevier.BollerC.SeegerT. (2013). Materials data for cyclic loading, part D: Aluminium and titanium alloys (C. Laird, Red.). Elsevier.Search in Google Scholar
Eastin, R. (2009). ‘WFD’ – What is it and what’s ‘LOV’ got to do with it? International Journal of Fatigue, 31(6), 1012–1016. https://doi.org/10.1016/j.ijfatigue.2008.04.003EastinR. (2009). ‘WFD’ – What is it and what’s ‘LOV’ got to do with it?International Journal of Fatigue, 31(6), 1012–1016. https://doi.org/10.1016/j.ijfatigue.2008.04.003Search in Google Scholar
Federal Aviation Administration. (2010). Aging Airplane Program: Widespread Fatigue Damage. Federal Register, 75(219). https://www.govinfo.gov/content/pkg/FR-2010-11-15/pdf/2010-28363.pdfFederal Aviation Administration. (2010). Aging Airplane Program: Widespread Fatigue Damage. Federal Register, 75(219). https://www.govinfo.gov/content/pkg/FR-2010-11-15/pdf/2010-28363.pdfSearch in Google Scholar
Federal Aviation Administration. (2011). Establishing and implementing limit of validity to prevent widespread fatigue damage (AC 120-104).Federal Aviation Administration. (2011). Establishing and implementing limit of validity to prevent widespread fatigue damage (AC 120-104).Search in Google Scholar
Li, G., Renaud, G., Liao, M., Okada, T., & Machida, S. (2017). A methodology for assessing fatigue life of a countersunk riveted lap joint. Advances in Aircraft and Spacecraft Science, 4(1), 1–19.LiG.RenaudG.LiaoM.OkadaT.MachidaS. (2017). A methodology for assessing fatigue life of a countersunk riveted lap joint. Advances in Aircraft and Spacecraft Science, 4(1), 1–19.Search in Google Scholar
Morimoto, T., Sugimoto, S., Kato, H., Hara, E., Yasuoka, T., Iwahori, Y., Ogasawara, T., & Ito, S. (2018). JAXA advanced composites database (in Japanese). JAXA Research and Development Memorandum, JAXA-RM-17-004, 1–230.MorimotoT.SugimotoS.KatoH.HaraE.YasuokaT.IwahoriY.OgasawaraT.ItoS. (2018). JAXA advanced composites database (in Japanese). JAXA Research and Development Memorandum, JAXA-RM-17-004, 1–230.Search in Google Scholar
Muller, R. P. G. (1995). An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints. Delft University of Technology.MullerR. P. G. (1995). An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints. Delft University of Technology.Search in Google Scholar
Okada, T., Kumazawa, H., Toyosawa, T., Takeda, T., Kasahara, T., Yamada, Y., Nagao, K., Aoki, Y., & Shoji, H. (2023). Research for thermal load and procedure to predict fatigue life up to form a fatigue crack on CFRP/Aluminum hybrid joints. Proceedings of the 31st ICAF Symposium. https://www.icaf.aero/icaf2023/proceedings/documents/118.pdfOkadaT.KumazawaH.ToyosawaT.TakedaT.KasaharaT.YamadaY.NagaoK.AokiY.ShojiH. (2023). Research for thermal load and procedure to predict fatigue life up to form a fatigue crack on CFRP/Aluminum hybrid joints. Proceedings of the 31st ICAF Symposium. https://www.icaf.aero/icaf2023/proceedings/documents/118.pdfSearch in Google Scholar
Seki, S., Arai, T., Fukushima, S., & Hosoi, A. (2017). Evaluation of fatigue life of thick CFRP laminates with toughened interlaminar layers in out-of-plane and in-plane transverse directions (in Japanese). Transaction of the JSME, 83(851), 16–00571. https://doi.org/10.1299/transjsme.16-00571SekiS.AraiT.FukushimaS.HosoiA. (2017). Evaluation of fatigue life of thick CFRP laminates with toughened interlaminar layers in out-of-plane and in-plane transverse directions (in Japanese). Transaction of the JSME, 83(851), 16–00571. https://doi.org/10.1299/transjsme.16-00571Search in Google Scholar
Terada, H., Okada, T., & Dybskiy, P. (2001). Effect of load components on fatigue like of fuselage model structure. Proceedings of the International Committee on Aeronautical Fatigue 2001, 1, 263–272.TeradaH.OkadaT.DybskiyP. (2001). Effect of load components on fatigue like of fuselage model structure. Proceedings of the International Committee on Aeronautical Fatigue 2001, 1, 263–272.Search in Google Scholar
Transport Airplane Metallic and Composite Structures Working Group. (2018). Transport Airplane Metallic and Composite Structures Working Group Recommendation Report. https://www.faa.gov/regulations_policies/rulemaking/committees/documents/media/TAMCSW G%20Recommendation%20Report.pdfTransport Airplane Metallic and Composite Structures Working Group. (2018). Transport Airplane Metallic and Composite Structures Working Group Recommendation Report. https://www.faa.gov/regulations_policies/rulemaking/committees/documents/media/TAMCSWG%20Recommendation%20Report.pdfSearch in Google Scholar