This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Arndt, D., Bangerth, W., & Davydov, D. (2021). Finite element library: Design, features, and insights. Computers & Mathematics with Applications, 81, 407–422. https://doi.org/10.1016/j.camwa.2020.02.022ArndtD.BangerthW.DavydovD. (2021). Finite element library: Design, features, and insights. Computers & Mathematics with Applications, 81, 407–422. https://doi.org/10.1016/j.camwa.2020.02.022Search in Google Scholar
De Mooij, C., Martinez, M., & Benedictus, R. (2019). iFEM benchmark problems for solid elements. Smart Materials and Structures, 28(6), 065003. https://doi.org/10.1088/1361-665X/ab136fDe MooijC.MartinezM.BenedictusR. (2019). iFEM benchmark problems for solid elements. Smart Materials and Structures, 28(6), 065003. https://doi.org/10.1088/1361-665X/ab136fSearch in Google Scholar
Ereiz, S., Duvnjak, I., & Jiménez-Alonso, J. F. (2022). Review of finite element model updating methods for structural applications. Structures, 41, 684–723. https://doi.org/10.1016/j.istruc.2022.05.041EreizS.DuvnjakI.Jiménez-AlonsoJ. F. (2022). Review of finite element model updating methods for structural applications. Structures, 41, 684–723. https://doi.org/10.1016/j.istruc.2022.05.041Search in Google Scholar
Halliday, A., Vulpe, C., & Fourie, A. (2023). A comparison of finite element software for use in tailings applications. In 91st Annual ICOLD Meeting, ICOLD.HallidayA.VulpeC.FourieA. (2023). A comparison of finite element software for use in tailings applications. In 91st Annual ICOLD Meeting, ICOLD.Search in Google Scholar
Hoppe, H. (2023). Progressive meshes. In Seminal Graphics Papers: Pushing the Boundaries, 2, 111–120. https://doi.org/10.1145/3596711.3596725HoppeH. (2023). Progressive meshes. In Seminal Graphics Papers: Pushing the Boundaries, 2, 111–120. https://doi.org/10.1145/3596711.3596725Search in Google Scholar
İrsel, G. (2019). The effect of using shell and solid models in structural stress analysis. Vibroengineering PROCEDIA, 27, 115–120. https://doi.org/10.21595/vp.2019.20977İrselG. (2019). The effect of using shell and solid models in structural stress analysis. Vibroengineering PROCEDIA, 27, 115–120. https://doi.org/10.21595/vp.2019.20977Search in Google Scholar
Jalammanavar, K., Pujar, N., & Raj, R. V. (2018). Finite element study on mesh discretization error estimation. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 344–350. https://doi.org/10.1109/CTEMS.2018.8769258JalammanavarK.PujarN.RajR. V. (2018). Finite element study on mesh discretization error estimation. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 344–350. https://doi.org/10.1109/CTEMS.2018.8769258Search in Google Scholar
Jiang, Z., Zhang, Z., & Hu, Y. (2021). Bijective and coarse high-order tetrahedral meshes. ACM Transactions on Graphics (TOG), 40(4), 1–16. https://doi.org/10.1145/3450626.3459840JiangZ.ZhangZ.HuY. (2021). Bijective and coarse high-order tetrahedral meshes. ACM Transactions on Graphics (TOG), 40(4), 1–16. https://doi.org/10.1145/3450626.3459840Search in Google Scholar
Kurowski, P. M. (2022). Finite element analysis for design engineers. Pennsylvania: SAE International.KurowskiP. M. (2022). Finite element analysis for design engineers. Pennsylvania: SAE International.Search in Google Scholar
Liu, Z., Chen, J., & Xia, Y. (2021). Automatic sizing functions for unstructured mesh generation. Engineering Computations, 38(10), 3995–4023. https://doi.org/10.1108/EC-12-2020-0700LiuZ.ChenJ.XiaY. (2021). Automatic sizing functions for unstructured mesh generation. Engineering Computations, 38(10), 3995–4023. https://doi.org/10.1108/EC-12-2020-0700Search in Google Scholar
Magomedov, I., & Sebaeva, Z. (2020). Comparative study of finite element analysis software packages. Journal of Physics: Conference Series, 1515(2020), 032073. https://doi.org/10.1088/1742-6596/1515/3/032073MagomedovI.SebaevaZ. (2020). Comparative study of finite element analysis software packages. Journal of Physics: Conference Series, 1515(2020), 032073. https://doi.org/10.1088/1742-6596/1515/3/032073Search in Google Scholar
Marcé-Nogué, J., Fortuny, J., Gil, L., & Sánchez, M. (2020). On improving mesh generation in finite element analysis. Spanish Journal of Palaeontology, 30(1), 117–132. https://doi.org/10.7203/sjp.30.1.17227Marcé-NoguéJ.FortunyJ.GilL.SánchezM. (2020). On improving mesh generation in finite element analysis. Spanish Journal of Palaeontology, 30(1), 117–132. https://doi.org/10.7203/sjp.30.1.17227Search in Google Scholar
Nemade, A., & Shikalgar, A. (2020). The mesh quality significance in finite element analysis. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 17(2), 44–48. https://doi.org/10.9790/1684-1702054448NemadeA.ShikalgarA. (2020). The mesh quality significance in finite element analysis. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 17(2), 44–48. https://doi.org/10.9790/1684-1702054448Search in Google Scholar
Okereke, M., & Keates, S. (2018). Finite element mesh generation. In Finite element applications: A practical guide to FEM process (p. 165–186). https://doi.org/10.1007/978-3-319-67125-3_6OkerekeM.KeatesS. (2018). Finite element mesh generation. In Finite element applications: A practical guide to FEM process (p. 165–186). https://doi.org/10.1007/978-3-319-67125-3_6Search in Google Scholar
Papadimitrakis, D., Armstrong, C. G., & Robinson, T. T. (2022). Investigating singularities in hex meshing. In Mesh generation and adaptation: Cutting-edge techniques (p. 41–67). https://doi.org/10.1007/978-3-030-92540-6_3.PapadimitrakisD.ArmstrongC. G.RobinsonT. T. (2022). Investigating singularities in hex meshing. In Mesh generation and adaptation: Cutting-edge techniques (p. 41–67). https://doi.org/10.1007/978-3-030-92540-6_3.Search in Google Scholar
Park, M., Kleb, W., Jones, W., Krakos, J., Todd, M., Loseille, A., Haimes, R., & Dannenhoffer, J. (2019). Geometry modeling for unstructured mesh adaptation. AIAA Aviation 2019 Forum. https://doi.org/10.2514/6.2019-2946.ParkM.KlebW.JonesW.KrakosJ.ToddM.LoseilleA.HaimesR.DannenhofferJ. (2019). Geometry modeling for unstructured mesh adaptation. AIAA Aviation 2019 Forum. https://doi.org/10.2514/6.2019-2946.Search in Google Scholar
Pietroni, N., Campen, M., Sheffer, A., Cherchi, G., Bommes, D., Gao, X., Scateni, R., Ledoux, F., Remacle, J. & Livesu, M. (2022). Hex-mesh generation and processing: A survey. ACM Transactions on Graphics, 42(2), 1–44.PietroniN.CampenM.ShefferA.CherchiG.BommesD.GaoX.ScateniR.LedouxF.RemacleJ. & LivesuM. (2022). Hex-mesh generation and processing: A survey. ACM Transactions on Graphics, 42(2), 1–44.Search in Google Scholar
Ruggiero, A., D’Amato, R., & Affatato, S. (2019). Comparison of meshing strategies in finite element modelling. Materials, 12(14), 2332. https://doi.org/10.3390/ma12142332RuggieroA.D’AmatoR.AffatatoS. (2019). Comparison of meshing strategies in finite element modelling. Materials, 12(14), 2332. https://doi.org/10.3390/ma12142332Search in Google Scholar
Sabat, L., & Kundu, C. K. (2020). History of Finite Element Method: A Review. In Recent Developments in Sustainable Infrastructure (pp. 395–404). Springer Singapore. https://doi.org/10.1007/978-981-15-4577-1_32SabatL.KunduC. K. (2020). History of Finite Element Method: A Review. In Recent Developments in Sustainable Infrastructure (pp. 395–404). Springer Singapore. https://doi.org/10.1007/978-981-15-4577-1_32Search in Google Scholar
Schröder, J., Wick, T., & Reese, S. (2021). A selection of benchmark problems in solid mechanics and applied mathematics. Archives of Computational Methods in Engineering, 28(2), 713–751. https://doi.org/10.1007/s11831-020-09477-3SchröderJ.WickT.ReeseS. (2021). A selection of benchmark problems in solid mechanics and applied mathematics. Archives of Computational Methods in Engineering, 28(2), 713–751. https://doi.org/10.1007/s11831-020-09477-3Search in Google Scholar
Shah, M., Yunus, M., & Rani, M. (2022). A comparison of FE modelling techniques of composite structure using MSC Patran/Nastran and Ansys software. AIP Conference Proceedings, 2545(1), 7. https://doi.org/10.1063/5.0103287ShahM.YunusM.RaniM. (2022). A comparison of FE modelling techniques of composite structure using MSC Patran/Nastran and Ansys software. AIP Conference Proceedings, 2545(1), 7. https://doi.org/10.1063/5.0103287Search in Google Scholar
Sher, R. J., Irfan-ul-Hassan, M., & Ghafoor, M. T. (2020). Analysis and design of box girder and t-beam bridge superstructure; A comparative study. Mehran University Research Journal of Engineering & Technology, 39(3), 453–465. https://doi.org/10.22581/muet1982.2003.01SherR. J.Irfan-ul-HassanM.GhafoorM. T. (2020). Analysis and design of box girder and t-beam bridge superstructure; A comparative study. Mehran University Research Journal of Engineering & Technology, 39(3), 453–465. https://doi.org/10.22581/muet1982.2003.01Search in Google Scholar
Smitha, T. (2021). A study on various mesh generation techniques used for engineering applications. Journal of Innovative Image Processing, 3(2), 75–84. https://doi.org/10.36548/jiip.2021.2.001SmithaT. (2021). A study on various mesh generation techniques used for engineering applications. Journal of Innovative Image Processing, 3(2), 75–84. https://doi.org/10.36548/jiip.2021.2.001Search in Google Scholar
Svetlichny, J. (2022). Overview of Ansys meshing pre-processor capabilities to create high quality meshes. Open Information and Computer Integrated Technologies, 5(95), 83–113. https://doi.org/10.32620/oikit.2022.95.07SvetlichnyJ. (2022). Overview of Ansys meshing pre-processor capabilities to create high quality meshes. Open Information and Computer Integrated Technologies, 5(95), 83–113. https://doi.org/10.32620/oikit.2022.95.07Search in Google Scholar