Accesso libero

The impact of sex and menstrual phase on complex cognitive performance, sleepiness and mood during a simulated night-shift

   | 09 ago 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita

Folkard S, Lombardi DA, Spencer MB. Estimating the circadian rhythm in the risk of occupational injuries and accidents. Chrono Int. 2006;23(6):1181-1192. https://doi.org/10.1080/07420520601096443 Search in Google Scholar

Philip P, Åkerstedt T. Transport and industrial safety, how are they affected by sleepiness and sleep restriction? Sleep Med Rev. 2006;10:347–356. https://doi.org/10.1016/j.smrv.2006.04.002 Search in Google Scholar

Saksvik IB, Bjorvatn B, Hetland H, Sandal GM, Pallesen S. Individual differences in tolerance to shift work - A systematic review. Sleep Med Rev. 2011;15:221–235. https://doi.org/10.1016/j.smrv.2010.07.002 Search in Google Scholar

Ftouni S, Sletten TL, Nicholas CL, Kennaway DJ, Lockley SW, Rajaratnam SMW. Ocular measures of sleepiness are increased in night shift workers undergoing a simulated night shift near the peak time of the 6-sulfatoxymelatonin rhythm. J Clin Sleep Med. 2015;11(10):1131-1141. https://doi.org/10.5664/jcsm.5086 Search in Google Scholar

Grant LK, Gooley JJ, St Hilaire MA, Rajaratnam SMW, Brainard GC, Czeisler CA, et al. Menstrual phase-dependent differences in neurobehavioral performance: The role of temperature and the progesterone/estradiol ratio. Sleep. 2020;43(2):zsz227. https://doi.org/10.1093/sleep/zsz227 Search in Google Scholar

Allen AM, McRae-Clark AL, Carlson S, Saladin ME, Gray KM, Wetherington CL et al. Supplemental material for determining menstrual phase in human biobehavioral research: A review with recommendations. Exp Clin Psychopharmacol. 2016 Feb;24(1):1-11. https://doi.org/10.1037/pha0000057 Search in Google Scholar

Vidafar P, Gooley JJ, Burns AC, Rajaratnam SMW, Rueger M, van Reen E, et al. Increased vulnerability to attentional failure during acute sleep deprivation in women depends on menstrual phase. Sleep. 2018;41(8):zsy098. https://doi.org/10.1093/sleep/zsy098 Search in Google Scholar

Israel SL, Schnelier O. The thermogenic property of progesterone. Fertil Steril. 1950;1(1):53-65. https://doi.org/10.1016/S0015-0282(16)30066-8 Search in Google Scholar

Kleitman N, Titelbaum S, Feiveson P. The effect of body temperature on reaction time. Am J Physiol. 1938;121(2):495-501. https://doi.org/10.1152/ajplegacy.1938.121.2.495 Search in Google Scholar

Dijk DJ, Duffy JF, Czeisler CA. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res. 1992;1(2):112-117. https://doi.org/10.1111/j.1365-2869.1992.tb00021.x Search in Google Scholar

Drummond M. Methods for the economic evaluation of health care programmes. 4th ed. Oxford, England Oxford University Press;2015. Search in Google Scholar

Darwent D, Ferguson SA, Sargent C, Paech GM, Williams L, Zhou X, et al. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony. Chrono Int. 2010;27(5):898–910. https://doi.org/10.3109/07420528.2010.488621 Search in Google Scholar

DeStefano D, LeFevre JA. The role of working memory in mental arithmetic. Eur J Cogn Psychol. 2004;16:353-386. https://doi.org/10.1080/09541440244000328 Search in Google Scholar

Maki PM, Rich JB, Rosenbaum S. Implicit memory varies across the menstrual cycle: Estrogen effects in young women. Neuropsychologia. 2002:40(5);518-529. https://doi.org/10.1016/S0028-3932(01)00126-9. Search in Google Scholar

Barel E. Cognitive performance across the menstrual cycle. J Psychol Cogn. 2019;4(3):41-47. Search in Google Scholar

Guerra-Araiza C, Coyoy-Salgado A, Camacho-Arroyo I. Sex differences in the regulation of progesterone receptor isoforms expression in the rat brain. Brain Res Bull. 2002;59(2):105-109. https://doi.org/10.1016/S0361-9230(02)00845-6. Search in Google Scholar

Guerra-Araiza C, Cerbbn MA, Morimoto S, Camacho-Arroyo I. Progesterone receptor isoforms expression pattern in the rat brain during the estrous cycle. Life Sci. 2000;66(18):1743-1752. https://doi.org/10.1016/S0024-3205(00)00497-5. Search in Google Scholar

Guerra-Araiza C, Villamar-Cruz ÃO, Gonza  Lez-Arenas A, Chaviray ÃR, Camacho-Arroyo I. Changes in progesterone receptor isoforms content in the rat brain during the oestrous cycle and after oestradiol and progesterone treatments. J Neuroendocrinol. 2003;15(10):984-990. https://doi.org/10.1046/j.1365-2826.2003.01088.x. Search in Google Scholar

Kato J, Hirata S, Nozawa A, Yamada-Mouri N. Gene expression of progesterone receptor isoforms in the rat brain. Horm Behav. 1994;28(4):454-463. https://doi/org/10.1006/hbeh.1994.1043. Search in Google Scholar

Driscoll I, Hamilton DA, Yeo RA, Brooks WM, Sutherland RJ. Virtual navigation in humans: The impact of age, sex, and hormones on place learning. Horm Behav. 2005;47(3):326–335. https://doi/org/10.1016/j.yhbeh.2004.11.013. Search in Google Scholar

Weiss EM, Kemmler G, Deisenhammer EA, Fleischhacker WW, Delazer M. Sex differences in cognitive functions. Pers Individ Differ. 2003;35(4): 863-875 https://doi.org/10.1016/S0191-8869(02)00288-X. Search in Google Scholar

Hampson E, Levy-Cooperman N, Korman JM. Estradiol and mental rotation: Relation to dimensionality, difficulty, or angular disparity? Horm Behav. 2014;65(3):238–248. https://doi.irg/10.1016/j.yhbeh.2013.12.016. Search in Google Scholar

Hausmann M, Slabbekoorn D, van Goozen SHM, Cohen-Kettenis PT, Güntürkün O. Sex hormones affect spatial abilities during the menstrual cycle. Behav Neurosci. 2000;114(6):1245–1250. https://doi.org/10.1037//0735-7044.114.6.1245. Search in Google Scholar

Poromaa IS, Gingnell M. Menstrual cycle influence on cognitive function and emotion processing from a reproductive perspective. Front Neurosci. 2014;8:380. https://doi.org/10.3389/fnins.2014.00380. Search in Google Scholar

Andreano JM, Cahill L. Sex influences on the neurobiology of learning and memory. Learn Mem. 2009;16(4):248–266. https://doi.org/10.1101/lm.918309. Search in Google Scholar

Åkerstedt T, Anund A, Axelsson J, Kecklund G. Subjective sleepiness is a sensitive indicator of insufficient sleep and impaired waking function. J Sleep Res. 2014;23(3):242–254. https://doi.org/10.1111/jsr.12158. Search in Google Scholar

Kaida K, Takahashi M, Åkerstedt T, Nakata A, Otsuka Y, Haratani T, et al. Validation of the Karolinska sleepiness scale against performance and EEG variables. Clin Neurophysiol. 2006;117(7):1574–1581. https://doi.org/10.1016/j.clinph.2006.03.011. Search in Google Scholar

Nevatte T, O’Brien PMS, Bäckström T, Brown C, Dennerstein L, Endicott J, et al. ISPMD consensus on the management of premenstrual disorders. Arch Womens Ment Health. 2013;16(4):279–291. https://doi.org/10.1007/s00737-013-0346-y. Search in Google Scholar

Bubonya M, Cobb-Clark DA, Wooden M. Mental health and productivity at work: Does what you do matter? Labour Econ. 2017;46:150–165. https://doi.org/10.1016/j.labeco.2017.05.001. Search in Google Scholar

Williams T, Krahenbuhl G. Menstrual cycle phase and running economy. Med Sci Sports Exerc. 1997;29(12):1609–1618. https://doi.org/10.1097/00005768-199712000-00010. Search in Google Scholar

Blatter K, Graw P, Münch M, Knoblauch V, Wirz-Justice A, Cajochen C. Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav Brain Res. 2006;168(2):312–317. https://doi.org/10.1016/j.bbr.2005.11.018. Search in Google Scholar

Kendall AP, Kautz MA, Russo MB, Killgore WDS. Effects of sleep deprivation on lateral visual attention. Int J Neurosci. 2006;116(10):1125–1138. https://doi.org/10.1080/00207450500513922. Search in Google Scholar

Bocca ML, Denise P. Total sleep deprivation effect on disengagement of spatial attention as assessed by saccadic eye movements. Clin Neurophysiol. 2006;117(4):894–899. https://doi.org/10.1016/j.clinph.2006.01.003. Search in Google Scholar

Wideman L, Montgomery MM, Levine BJ, Beynnon BD, Shultz SJ. Accuracy of calendar-based methods for assigning menstrual cycle phase in women. Sports Health. 2012;5(2):143-149. https://doi.org/10.1177/1941738112469930. Search in Google Scholar

Field A. Discovering statistics using IBM SPSS statistics. 4th ed. SAGE Publications; 2013. Search in Google Scholar

Lim J, Dinges DF. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull. 2010;136(3):375–389. https://doi.org/10.1037/a0018883. Search in Google Scholar

Wickens CD, Hutchins SD, Laux L, Sebok A. The impact of sleep disruption on complex cognitive tasks. Hum Factors. 2015;57:930–946. https://doi.org/10.1177/0018720815571935. Search in Google Scholar

St Hilaire MA, Rüger M, Fratelli F, Hull JT, Phillips AJK, Lockley SW. Modeling neurocognitive decline and recovery during repeated cycles of extended sleep and chronic sleep deficiency. Sleep. 2017;40(1):zsw009. https://doi.org/10.1093/sleep/zsw009. Search in Google Scholar

Hampson E. Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology. 1990;15(2):97-111. https://doi.org/10.1016/0306-4530(90)90018-5. Search in Google Scholar

Chellappa SL, Morris CJ, Scheer FAJL. Circadian misalignment increases mood vulnerability in simulated shift work. Sci Rep. 2020;10(1):18614. https://doi.org/10.1038/s41598-020-75245-9. Search in Google Scholar

Boudreau P, Dumont GA, Boivin DB. Circadian adaptation to night shift work influences sleep, performance, mood and the autonomic modulation of the heart. PLoS One. 2013;8(7):e70813. https://doi.org/10.1371/journal.pone.0070813 Search in Google Scholar

Birchler-Pedross A, Schröder CM, Münch M, Knoblauch V, Blatter K, Schnitzler-Sack C, et al. Subjective well-being is modulated by circadian phase, sleep pressure, age, and gender. J Biol Rhythms. 2009;24(3):232-242. https://doi.org/10.1177/0748730409335546. Search in Google Scholar

Albertella L, le Pelley M, Copeland J. Cannabis use, schizotypy, and attentional inhibition. Drug Alcohol Depend. 2015;156:e5. https://doi.org/10.1016/j.drugalcdep.2015.07.931 Search in Google Scholar

Becker JB, Berkley KJ, Geary N, Hampson E, Herman JP, Young EA. Sex differences in the brain: From genes to behavior. editors. New York, NY: Oxford University Press, Inc; 2007. Search in Google Scholar

Cole LA, Ladner DG, Byrn FW. The normal variabilities of the menstrual cycle. Fertil Steril. 2009;91(2):522–527. https://doi.org/10.1016/j.fertnstert.2007.11.073 Search in Google Scholar

Lenton EA, Landgren BM, Sexton L, Harper R. Normal variation in the length of the follicular phase of the menstrual cycle: effect of chronological age. Br J Obstet Gynaecol. 1984;91(7):681-684. https://doi.org/10.1111/j.1471-0528.1984.tb04830.x. Search in Google Scholar

Stachenfeld NS, Silva C, Keefe DL. Estrogen modifies the temperature effects of progesterone. J Appl Physiol. 2000;88(5):1643-1649. https://doi.org/10.1152/jappl.2000.88.5.1643. Search in Google Scholar

Allen AM, McRae-Clark AL, Carlson S, Saladin ME, Gray KM, Wetherington CL, et al. Determining menstrual phase in human biobehavioral research: A review with recommendations. Exp Clin Psychopharmacol. 2016 Feb 1;24(1):1–11. https://doi.org/10.1037/pha0000057. Search in Google Scholar

Wright KP, Badia P. Effects of menstrual cycle phase and oral contraceptives on alertness, cognitive performance, and circadian rhythms during sleep deprivation. Behav Brain Res. 1999;103: 185-194. https://doi.org/10.1016/s0166-4328(99)00042-x. Search in Google Scholar

eISSN:
2206-5369
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Social Sciences, Education, other, Social Pedagogy, Social Work