[
Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI. Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105, 161–171, 2000.
]Search in Google Scholar
[
Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10, 468–477, 2009.
]Search in Google Scholar
[
Benite-Ribeiro SA, Putt DA, Santos JM. The effect of physical excise on orexigenic and anorexigenic peptides and its role on long-term feeding control. Med Hypotheses 93, 30–33, 2016.
]Search in Google Scholar
[
Blyszczuk P, Muller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Balser K, Luscher TF, Distler O, Errikson U, Kania G. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J 38, 1413–1425, 2017.
]Search in Google Scholar
[
Colston JT, de la Rosa SD, Koehler M, Gonzales K, Mestril R, Freeman GL, Bailey SR, Chandreasekar B. Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol 293, 1839–1846, 2007.
]Search in Google Scholar
[
Dawson K, Aflaki M, Nattel S. Role of the Wnt‐Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J Physiol 591, 1409–1432, 2013.
]Search in Google Scholar
[
de Leeuw N, Ruiter DJ, Balk AH, de Jonge N, Melchers WJ, Galama JM. Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl Int 14, 299–306, 2001.
]Search in Google Scholar
[
Deb A, Ubil E. Cardiac fibroblast in development and wound healing. J Mol Cell Cardiol 70, 47–55, 2014.
]Search in Google Scholar
[
Dzialo E, Tkacz K, Blyszczuk P. Crosstalk between the TGF-β and WNT signalling pathways during cardiac fibro-genesis. Acta Biochim Pol 65, 341–349, 2018.
]Search in Google Scholar
[
Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M, Leask A, Majesky M, Deb A. Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J 31, 429–442, 2012.
]Search in Google Scholar
[
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT signaling in cardiac and vascular disease. Pharmacol Rev 70, 68–141, 2018.
]Search in Google Scholar
[
Galanti G, Stefani L, Mascherini G, Di Tante V, Toncelli L. Left ventricular remodeling and the athlete’s heart, irrespective of quality load training. Cardiovasc Ultrasound 14, 46, 2016.
]Search in Google Scholar
[
Gonzalez A, Schelbert EB, Diez J, Butler J. Myocardial interstitial fibrosis in heart. Biological and translational perspectives. J Am Coll Cardiol 71, 1696–1706, 2018.
]Search in Google Scholar
[
Han A, Lu Y, Zheng Q, Zhang J, Zhao Y, Zhao M, Cui X. Qiliqiangxin attenuates cardiac remodeling via inhibition of TGF-β1/Smad3 and NF-κB signaling pathways in a rat model of myocardial infarction. Cell Physiol Biochem 45, 1797–1806, 2018.
]Search in Google Scholar
[
Khajehnasiri N, Khazali H, Sheikhzadeh F. Various responses of male pituitary-gonadal axis to different intensities of long-term exercise: Role of expression of KNDY-related genes. J Biosci 43, 569–574, 2018.
]Search in Google Scholar
[
Khajehnasiri N, Khazali H, Sheikhzadeh F, Ghowsi M. One-month of high-intensity exercise did not change the food intake and the hypothalamic arcuate nucleus proopiomelanocortin and neuropeptide Y expression levels in male Wistar rats. Endocr Regul 53, 8–13, 2019.
]Search in Google Scholar
[
Kim W, Kim M, Jho EH. Wnt/β-catenin signalling: From plasma membrane to nucleus. Biochem J 450, 9–21, 2013.
]Search in Google Scholar
[
La Gerche A, Taylor AJ, Prior DL. Athlete’s heart: the potential for multimodality imaging to address the critical remaining questions. JACC Cardiovasc Imaging 2, 350–363, 2009.
]Search in Google Scholar
[
La Gerche A, Burns AT, Taylor AJ, Macisaak AI, Haidbuchel H, Prior DL. Maximal oxygen consumption is best predicted by measures of cardiac size rather than function in healthy adults. Eur J Appl Physiol 112, 2139–2147, 2012.
]Search in Google Scholar
[
Lakhan SE, Harle L. Cardiac fibrosis in the elderly, normotensive athlete: case report and review of the literature. Diagn Pathol 3, 12, 2008.
]Search in Google Scholar
[
Li X, Han D, Tian Z, Gao B, Fan M, Li C, Li X, Wang Y, Ma S, Cao F. Activation of cannabinoid receptor type II by AM1241 ameliorates myocardial fibrosis via Nrf2-mediated inhibition of TGF-β1/Smad3 pathway in myocardial infarction mice. Cell Physiol Biochem 39, 1521–1536, 2016.
]Search in Google Scholar
[
Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P, Rampazzo A. Wnt/β catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 8, 60640–60655, 2017.
]Search in Google Scholar
[
Markert CD, Ambrosio F, Call JA, Grange RW. Exercise and Duchenne muscular dystrophy: toward evidence‐based exercise prescription. Muscle Nerve 43, 464–478, 2011.
]Search in Google Scholar
[
Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 98, 1154–1162, 2005.
]Search in Google Scholar
[
Su SA, Yang D, Wu Y, Xie Z, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L, Wang Y, Wang JA, Xiang M. EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling. Circ Res 121, 617–627, 2017.
]Search in Google Scholar
[
Surendran K, McCaul SP, Simon TC. A role for Wnt-4 in renal fibrosis. Am J Physiol Renal Physiol 3, 431–441, 2002.
]Search in Google Scholar
[
Tao H, Yang JJ, Shi KH., Li J. Wnt signaling pathway in cardiac fibrosis: new insights and directions. Metabolism 65, 30–40, 2016.
]Search in Google Scholar
[
Tzouvelekis A, Bonella F, Spagnolo P. Update on therapeutic management of idiopathic pulmonary fibrosis. Ther Clin Risk Manag 11, 359–370, 2015.
]Search in Google Scholar
[
van de Schoor FR, Aengevaeren VL, Hopman MT, Oxborough DL, George KP, Thompson PD, Eijsvogels TM. Myocardial fibrosis in athletes. Mayo Clin Proc 91, 1617–1631, 2016.
]Search in Google Scholar
[
von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 110, 1628–1645, 2012.
]Search in Google Scholar
[
Wang Y, Li YP, Paulson C, Shao JZ, Zhang X, Wu M, Chen W. Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci 19, 379–407, 2014.
]Search in Google Scholar
[
Wilson M, O’Hanlon R, Prasad S, Deighan A, Macmillan P, Oxborough D, Godfrey R, Smith G, Maceira A, Sharma S, George K, Whyte G. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athlete. J Appl Physiol 110, 1622–1626, 2011.
]Search in Google Scholar
[
Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ. WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene. Genes Dev 14, 585–595, 2000.
]Search in Google Scholar