Accesso libero

Does dehydroepiandrosterone sulfate have a role in COVID-19 prognosis and treatment?

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Andus T, Straub RH, Vogl D et al. Low serum levels of dehydroepiandrosterone sulfate (DHEAS) in Crohn’s disease (CD) and ulcerative colitis (UC). Gastroenterology 110, A855, 1996. Search in Google Scholar

Arlt W, Hammer F, Sanning P, Butcher SK, Lord JM, Allolio B, Annane D, Stewart PM. Dissociation of serum dehydroepiandrosterone and dehydroepiandrosterone sulfate in septic shock. J Clin Endocrinol Metab 91, 2548–2554, 2006.10.1210/jc.2005-225816608898 Search in Google Scholar

Arvat E, Di Vito L, Lanfranco F, Maccario M, Baffoni C, Rossetto R, Aimaretti G, Camanni F, Ghigo E. Stimulatory effect of adrenocorticotropin on cortisol, aldosterone, and dehydroepiandrosterone secretion in normal humans: Dose-response study. J Clin Endocrinol Metab 85, 3141–3146, 2000.10.1210/jcem.85.9.678410999799 Search in Google Scholar

Auci D, Kaler L, Subramanian S, Huang Y, Frincke J, Reading C, Offner H. A new orally bioavailable synthetic androstene inhibits collagen-induced arthritis in the mouse: androstene hormones as regulators of regulatory T cells. Ann N Y Acad Sci 1110, 630–640, 2007.10.1196/annals.1423.06617911478 Search in Google Scholar

Baylis D, Bartlett DB, Syddall HE, Ntani G, Gale CR, Cooper C, Lord JM, Sayer AA. Immune-endocrine biomarkers as predictors of frailty and mortality: a 10-year longitudinal study in community-dwelling older people. Age (Dordr) 35, 963–971, 2013.10.1007/s11357-012-9396-8363638722388931 Search in Google Scholar

Beishuizen A, Thijs LG, Vermes I. Decreased levels of dehydroepiandrosterone sulphate in severe critical illness: a sign of exhausted adrenal reserve? Crit Care 6, 434–438, 2002.10.1186/cc153013014412398784 Search in Google Scholar

Bentley C, Hazeldine J, Greig C, Lord J, Foster M. Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient. Burns Trauma 7, 26, 2019.10.1186/s41038-019-0158-z667651731388512 Search in Google Scholar

Blauer KL, Poth M, Rogers WM, Bernton EW. Dehydroepiandrosterone antagonizes the suppressive effects of dexamethasone on lymphocyte proliferation. Endocrinology 129, 3174–3179, 1991.10.1210/endo-129-6-31741835439 Search in Google Scholar

Browne ES, Wright BE, Porter JR, Svec F. Dehydroepiandrosterone: Antiglucocorticoid action in mice. Am J Med Sci 303, 366–371, 1992.10.1097/00000441-199206000-000031351360 Search in Google Scholar

Buhimschi CS, Turan OM, Funai EF, Azpurua H, Bahtiyar MO, Turan S, Zhao G, Dulay A, Bhandari V, Copel JA, Buhimschi IA. Fetal adrenal gland volume and cortisol/dehydroepiandrosterone sulfate ratio in inflammation-associated preterm birth. Obstet Gynecol 111, 715–722, 2008.10.1097/AOG.0b013e318161029418310376 Search in Google Scholar

Cao J, Zhang H, Yang Z, Zhao J, Ma H. Effect of dehydroepiandrosterone on the immune response and gut micro-biota in dextran sulfate sodium-induced colitis mice. Mol Immunol 118, 60–72, 2020.10.1016/j.molimm.2019.12.00831855808 Search in Google Scholar

Chang DM, Chu SJ, Chen HC, Kuo SY, Lai JH. Dehydroepiandrosterone suppresses interleukin 10 synthesis in women with systemic lupus erythematosus. Ann Rheum Dis 63, 1623–1626, 2004.10.1136/ard.2003.016576 Search in Google Scholar

Chen CC, Parker CR Jr. Adrenal androgens and the immune system. Semin Reprod Med 22, 369–377, 2004.10.1055/s-2004-861553 Search in Google Scholar

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 130, 2620–2629, 2020.10.1172/JCI137244 Search in Google Scholar

Choi IS, Cui Y, Koh YA, Lee HC, Cho YB, Won YH. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J Intern Med 23, 176–181, 2008.10.3904/kjim.2008.23.4.176 Search in Google Scholar

Choy KW. Cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol 8, 808, 2020.10.1016/S2213-8587(20)30305-3 Search in Google Scholar

Ciampa ML, O’Hara TA, Joel CL, Gleaton MM, Tiwari KK, Boudreaux DM, Prasad BM. Absence of “Cytokine Storm” in hospitalized COVID-19 patients: A retrospective cohort study. Infect Dis Rep 13, 377–387, 2021.10.3390/idr13020036816763033921604 Search in Google Scholar

Coles AJ, Thompson S, Cox AL, Curran S, Gurnell EM, Chatterjee VK. Dehydroepiandrosterone replacement in patients with Addison’s disease has a bimodal effect on regulatory (CD4+CD25hi and CD4+FoxP3+) T cells. Eur J Immunol 35, 3694–3703, 2005.10.1002/eji.20052612816252254 Search in Google Scholar

Cutolo M, Foppiani L, Minuto F. Hypothalamic-pituitary-adrenal axis impairment in the pathogenesis of rheumatoid arthritis and polymyalgia rheumatica. J Endocrinol Invest 25, 19–23, 2002. Search in Google Scholar

Daynes RA, Dudley DJ, Araneo BA. Regulation of murine lymphokine production in vivo. II. Dehydroepiandrosterone is a natural enhancer of interleukin 2 synthesis by helper T cells. Eur J Immunol 20, 793–802, 1990.10.1002/eji.18302004132140789 Search in Google Scholar

De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, Gozzi L, Iannone A, Lo Tartaro D, Mattioli M, Paolini A, Menozzi M, Milic J, Franceschi G, Fantini R, Tonelli R, Sita M, Sarti M, Trenti T, Brugioni L, Cicchetti L, Facchinetti F, Pietrangelo A, Clini E, Girardis M, Guaraldi G, Mussini C, Cossarizza A. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 11, 3434, 2020.10.1038/s41467-020-17292-4733851332632085 Search in Google Scholar

De Castro R, Ruiz D, Lavin BA, Lamsfus JA, Vazquez L, Montalban C, Marcano G, Sarabia R, Paz-Zulueta M, Blanco C, Santibanez M. Cortisol and adrenal androgens as independent predictors of mortality in septic patients. PLoS One 14, e0214312, 2019.10.1371/journal.pone.0214312644886930946764 Search in Google Scholar

de la Torre B, von Krogh G, Svensson M, Holmberg V. Blood cortisol and dehydroepiandrosterone sulphate (DHEAS) levels and CD4 T cell counts in HIV infection. Clin Exp Rheumatol 15, 87–90, 1997. Search in Google Scholar

Degelau J, Guay D, Hallgren H. The effect of DHEAS on influenza vaccination in aging adults. J Am Geriatr Soc 45, 747–751, 1997.10.1111/j.1532-5415.1997.tb01482.x Search in Google Scholar

Du C, Guan Q, Khalil MW, Sriram S. Stimulation of Th2 response by high doses of dehydroepiandrosterone in KLH-primed splenocytes. Exp Biol Med (Maywood) 226, 1051–1060, 2001.10.1177/153537020122601113 Search in Google Scholar

Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. Computational insight of dexamethasone against potential targets of SARS-CoV-2. J Biomol Struct Dyn 1–11, 2020.10.1080/07391102.2020.1847197 Search in Google Scholar

Fernandez RDV, Diaz A, Bongiovanni B, Gallucci G, Bertola D, Gardenez W, Lioi S, Bertolin Y, Galliano R, Bay ML, Bottasso O, D’Attilio L. Evidence for a more disrupted immune-endocrine relation and cortisol immuno-logic influences in the context of tuberculosis and type 2 diabetes comorbidity. Front Endocrinol (Lausanne) 11, 126, 2020.10.3389/fendo.2020.00126 Search in Google Scholar

Garg MK, Gopalakrishnan M, Yadav P, Misra S. Endocrine involvement in COVID-19: mechanisms, clinical features, and implications for care. Indian J Endocrinol Metab 24, 381–386, 2020.10.4103/ijem.IJEM_440_20 Search in Google Scholar

Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G, Gkavogianni T, Adami ME, Katsaounou P, Ntaganou M, Kyriakopoulou M, Dimopoulos G, Koutsodimitropoulos I, Velissaris D, Koufargyris P, Karageorgos A, Katrini K, Lekakis V, Lupse M, Kotsaki A, Renieris G, Theodoulou D, Panou V, Koukaki E, Koulouris N, Gogos C, Koutsoukou A. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000.e3, 2020.10.1016/j.chom.2020.04.009 Search in Google Scholar

Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol 145, 213–225, 2015.10.1016/j.jsbmb.2014.06.003 Search in Google Scholar

Hu Y, Cardounel A, Gursoy E, Anderson P, Kalimi M. Anti-stress effects of dehydroepiandrosterone: Protection of rats against repeated immobilization stressinduced weight loss, glucocorticoid receptor production, and lipid peroxidation. Biochem Pharmacol 59, 753–762, 2000.10.1016/S0006-2952(99)00385-8 Search in Google Scholar

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506, 2020.10.1016/S0140-6736(20)30183-5 Search in Google Scholar

Khorram O, Vu L, Yen SS. Activation of immune function by dehydroepiandrosterone (DHEA) in age-advanced men. J Gerontol A Biol Sci Med Sci 52, M1-M7, 1997.10.1093/gerona/52A.1.M1 Search in Google Scholar

Kimonides VG, Spillantini MG, Sofroniew MV, Fawcett JW, Herbert J. Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures. Neuroscience 89, 429–436, 1999.10.1016/S0306-4522(98)00347-9 Search in Google Scholar

Klopfenstein T, Zayet S, Lohse A, Balblanc JC, Badie J, Royer PY, Toko L, Mezher C, Kadiane-Oussou NJ, Bossert M, Bozgan AM, Charpentier A, Roux MF, Contreras R, Mazurier I, Dussert P, Gendrin V, Conrozier T; HNF Hospital Tocilizumab multidisciplinary team. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect 50, 397–400, 2020.10.1016/j.medmal.2020.05.001 Search in Google Scholar

Kurtis JD, Friedman JF, Leenstra T, Langdon GC, Wu HW, Manalo DL, Su L, Jiz M, Jarilla B, Pablo AO, McGarvey ST, Olveda RM, Acosta LP. Pubertal development predicts resistance to infection and reinfection with Schistosoma japonicum. Clinical Infectious Diseases 42, 1692–1698, 2006.10.1086/504326 Search in Google Scholar

Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, Li B, Song X, Zhou X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol 127, 104370, 2020.10.1016/j.jcv.2020.104370 Search in Google Scholar

Marx C, Petros S, Bornstein SR, Weise M, Wendt M, Menschikowski M, Engelmann L, Hoffken G. Adrenocortical hormones in survivors and nonsurvivors of severe sepsis: diverse time course of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, and cortisol. Crit Care Med 31, 1382–1388, 2003.10.1097/01.CCM.0000063282.83188.3D Search in Google Scholar

Mauboussin JM, Mahamat A, Peyriere H, Rouanet I, Fabbro-Peray P, Daures JP, Vincent D. Low plasma levels of dehydroepiandrosterone sulphate in HIV-positive patients coinfected with hepatitis C virus. HIV Med 5, 151–157, 2004.10.1111/j.1468-1293.2004.00203.x Search in Google Scholar

May M, Holmes E, Rogers W, Poth M. Protection from glucocorticoid induced thyme involution by dehydroepiandrosterone. Life Sciences 46, 1601–1609, 1990.10.1016/0024-3205(90)90394-7 Search in Google Scholar

McLachlan JA, Serkin CD, Bakouche O. Dehydroepiandrosterone modulation of lipopolysaccharide stimulated monocyte cytotoxicity. J Immunol 156, 328–335, 1996. Search in Google Scholar

McMurray RW, May W. Sex hormones and systemic lupus erythematosus: review and meta-analysis. Arthritis Rheum 48, 2100–2110, 2003.10.1002/art.1110512905462 Search in Google Scholar

Meckiff BJ, Ramirez-Suastegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, Eschweiler S, Grifoni A, Pelosi E, Weiskopf D, Sette A, Ay F, Seumois G, Ottensmeier CH, Vijayanand P. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19. Cell 183, 1340–1353.e16, 2020.10.1016/j.cell.2020.10.001753458933096020 Search in Google Scholar

Narvaez J, Bernad B, Diaz Torne C, Momplet JV, Montpel JZ, Nolla JM, Valverde-Garcia J. Low serum levels of DHEAS in untreated polymyalgia rheumatica/giant cell arteritis. J Rheumatol 33, 1293–1298, 2006. Search in Google Scholar

Offner H, Firestein GS, Boyle DL, Pieters R, Frincke JM, Garsd A, White SK, Reading CL, Auci DL. An orally bio-available synthetic analog of an active dehydroepiandrosterone metabolite reduces established disease in rodent models of rheumatoid arthritis. J Pharmacol Exp Ther 329, 1100–1109, 2009.10.1124/jpet.108.14508619297421 Search in Google Scholar

Pal R. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine 68, 251–252, 2020.10.1007/s12020-020-02325-1 Search in Google Scholar

Pal R, Banerjee M, Bhadada SK. Cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol 8, 809, 2020.10.1016/S2213-8587(20)30304-1 Search in Google Scholar

Phillips AC, Carroll D, Gale CR, Lord JM, Arlt W, Batty GD. Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam Experience Study. Eur J Endocrinol 163, 285–292, 2010.10.1530/EJE-10-029920498139 Search in Google Scholar

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, Tian DS. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 71, 762–768, 2020.10.1093/cid/ciaa248710812532161940 Search in Google Scholar

Radford DJ, Wang K, McNelis JC, Taylor AE, Hechenberger G, Hofmann J, Chahal H, Arlt W, Lord JM. Dehydroepiandrosterone sulfate directly activates protein kinase C-beta to increase human neutrophil superoxide generation. Mol Endocrinol 24, 813–821, 2010.10.1210/me.2009-0390541753320172962 Search in Google Scholar

Rajcani J, Solarikova P, Brezina I, Jezova D. Neuroendocrine responses to a psychosocial stress test for larger groups of participants: comparison of two test exposures. Endocr Regul 54, 255–259, 2020.10.2478/enr-2020-002833885250 Search in Google Scholar

Ramezani M, Simani L, Karimialavijeh E, Rezaei O, Hajiesmaeili M, Pakdaman H. The role of anxiety and cortisol in outcomes of patients with Covid-19. Basic Clin Neurosci 11, 179–184, 2020.10.32598/bcn.11.covid19.1168.2736810032855777 Search in Google Scholar

RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Bright-ling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 384, 693–704, 2021.10.1056/NEJMoa2021436738359532678530 Search in Google Scholar

Ritsner MS, Strous RD. Neurocognitive deficits in schizophrenia are associated with alterations in blood levels of neurosteroids: a multiple regression analysis of findings from a double-blind, randomized, placebo-controlled, crossover trial with DHEA. J Psychiatr Res 44, 75–80, 2010.10.1016/j.jpsychires.2009.07.00219665142 Search in Google Scholar

Rosenfeld RS, Hellman L, Gallagher TF. Metabolism and interconversion of dehydroisoandrosterone and dehydroisoandrosterone sulfate. J Clin Endocrinol Metab 35, 187–193, 1972.10.1210/jcem-35-2-1874262844 Search in Google Scholar

Santucci N, D’Attilio L, Kovalevski L, Bozza V, Besedovsky H, del Rey A, Bay ML, Bottasso O. A multifaceted analysis of immune-endocrine-metabolic alterations in patients with pulmonary tuberculosis. PLoS One 6, e26363, 2011.10.1371/journal.pone.0026363 Search in Google Scholar

Sattler A, Angermair S, Stockmann H, Heim KM, Khadzhynov D, Treskatsch S, Halleck F, Kreis ME, Kotsch K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest 130, 6477–6489, 2020.10.1172/JCI140965 Search in Google Scholar

Sharma A. Inferring molecular mechanisms of dexamethasone therapy in severe COVID-19 from existing transcriptomic data. Gene 788, 145665, 2021.10.1016/j.gene.2021.145665 Search in Google Scholar

Straub RH, Antoniou E, Zeuner M, Lock G, Scholmerich J, Lang B. High prolactin and low dehydroepiandrosterone sulfate serum levels in patients with severe systemic sclerosis. Br J Rheumatol 36, 426–432, 1997.10.1093/rheumatology/36.4.426 Search in Google Scholar

Straub RH, Vogl D, Gross V, Lang B, Scholmerich J, Andus T. Association of humoral markers of inflammation and dehydroepiandrosterone sulfate or cortisol serum levels in patients with chronic inflammatory bowel disease. Am J Gastroenterol 93, 2197–2202, 1998a.10.1111/j.1572-0241.1998.00535.x Search in Google Scholar

Straub RH, Konecna L, Hrach S, Rothe G, Kreutz M, Scholmerich J, Falk W, Lang B. Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 83, 2012–2017, 1998b.10.1210/jcem.83.6.4876 Search in Google Scholar

Straub RH, Lehle K, Herfarth H, Weber M, Falk W, Preuner J, Scholmerich J. Dehydroepiandrosterone in relation to other adrenal hormones during an acute inflammatory stressful disease state compared with chronic inflammatory disease: role of interleukin-6 and tumour necrosis factor. Eur J Endocrinol 146, 365–374, 2002.10.1530/eje.0.1460365 Search in Google Scholar

Suzuki T, Suzuki N, Daynes RA, Engleman EG. Dehydroepiandrosterone enhances IL-2 production and cytotoxic effector function of human T cells. Clin Immunol Immunopathol 61, 202–211, 1991.10.1016/S0090-1229(05)80024-8 Search in Google Scholar

Suzuki T, Suzuki N, Engleman EG, Mizushima Y, Sakane T. Low serum levels of dehydroepiandrosterone may cause deficient IL-2 production by lymphocytes in patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 99, 251–255, 1995.10.1111/j.1365-2249.1995.tb05541.x Search in Google Scholar

Tan T, Khoo B, Mills EG, Phylactou M, Patel B, Eng PC, Thurston L, Muzi B, Meeran K, Prevost AT, Comninos AN, Abbara A, Dhillo WS. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol 8, 659–660, 2020.10.1016/S2213-8587(20)30216-3 Search in Google Scholar

Teblick A, Peeters B, Langouche L, Van den Berghe G. Adrenal function and dysfunction in critically ill patients. Nat Rev Endocrinol 15, 417–427, 2019.10.1038/s41574-019-0185-7 Search in Google Scholar

Thijs L, Fagard R, Forette F, Nawrot T, Staessen JA. Are low dehydroepiandrosterone sulphate levels predictive for cardiovascular diseases? A review of prospective and retrospective studies. Acta Cardiol 58, 403–10, 2003.10.2143/AC.58.5.2005304 Search in Google Scholar

Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, Franceschini F, Airò P, Bazzani C, Beindorf EA, Berlendis M, Bezzi M, Bossini N, Castellano M, Cattaneo S, Cavazzana I, Contessi GB, Crippa M, Delbarba A, De Peri E, Faletti A, Filippini M, Filippini M, Frassi M, Gaggiotti M, Gorla R, Lanspa M, Lorenzotti S, Marino R, Maroldi R, Metra M, Matteelli A, Modina D, Moioli G, Montani G, Muiesan ML, Odolini S, Peli E, Pesenti S, Pezzoli MC, Pirola I, Pozzi A, Proto A, Rasulo FA, Renisi G, Ricci C, Rizzoni D, Romanelli G, Rossi M, Salvetti M, Scolari F, Signorini L, Taglietti M, Tomasoni G, Tomasoni LR, Turla F, Valsecchi A, Zani D, Zuccalà F, Zunica F, Focà E, Andreoli L, Latronico N. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 19, 102568, 2020.10.1016/j.autrev.2020.102568 Search in Google Scholar

Tsai MH, Huang HC, Peng YS, Chen YC, Tian YC, Yang CW, Lien JM, Fang JT, Wu CS, Hsieh SY, Lee FY. Dehydroepiandrosterone sulfate and dehydroepiandrosterone sulfate/cortisol ratio in cirrhotic patients with septic shock: another sign of hepatoadrenal syndrome? Crit Care 21, 214, 2017.10.1186/s13054-017-1768-0 Search in Google Scholar

WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, Annane D, Azevedo LCP, Berwanger O, Cavalcanti AB, Dequin PF, Du B, Emberson J, Fisher D, Giraudeau B, Gordon AC, Granholm A, Green C, Haynes R, Heming N, Higgins JPT, Horby P, Jüni P, Landray MJ, Le Gouge A, Leclerc M, Lim WS, Machado FR, McArthur C, Meziani F, Møller MH, Perner A, Petersen MW, Savovic J, Tomazini B, Veiga VC, Webb S, Marshall JC. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 324, 1330–1341, 2020.10.1001/jama.2020.17023 Search in Google Scholar

Wolkowitz OM, Reus VI, Roberts E, Manfredi F, Chan T, Raum WJ, Ormiston S, Johnson R, Canick J, Brizendine L, Weingartner H. Dehydroepiandrosterone (DHEA) treatment of depression. Biol Psychiatry 41, 311–318, 1997.10.1016/S0006-3223(96)00043-1 Search in Google Scholar

Xiang Z, Liu J, Shi D, Chen W, Li J, Yan R, Bi Y, Hu W, Zhu Z, Yu Y, Yang Z. Glucocorticoids improve severe or critical COVID-19 by activating ACE2 and reducing IL-6 levels. Int J Biol Sci 16, 2382–2391, 2020.10.7150/ijbs.47652737864232760206 Search in Google Scholar

Yang Q, Mao Q, Liu M, Wang K, Wu Z, Fang W, Yang Z, Luo P, Ke S, Shi L. The inhibitory effect of dehydroepiandrosterone and its derivatives against influenza A virus in vitro and in vivo. Arch Virol 161, 3061–3072, 2016.10.1007/s00705-016-2993-627518401 Search in Google Scholar

Zhao J, Cao J, Yu L, Ma H. Dehydroepiandrosterone resisted E. Coli O157:H7-induced inflammation via blocking the activation of p38 MAPK and NF-κB pathways in mice. Cytokine 127, 154955, 2020.10.1016/j.cyto.2019.15495531864092 Search in Google Scholar

eISSN:
1336-0329
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Neurobiology, Medicine, Basic Medical Science, other, Clinical Medicine, Internal Medicine, Endocrinology, Diabetology