[
Abir, F.A. & Saha R. (2021). Assessment of land surface temperature and land cover variability during winter: A spatio-temporal analysis of Pabna municipality in Bangladesh. Environmental Challenges, 4, 100167. DOI: 10.1016/j.envc.2021.100167.
]Search in Google Scholar
[
Arshad, A., Zhang, W., Zaman, M.A., Dilawar, A. & Sajid Z. (2019). Monitoring the impacts of spatio-temporal land-use changes on the regional climate of city Faisalabad, Pakistan. Annals of GIS, 25(1), 57–70. DOI: 10.1080/19475683.2018.1543205.
]Search in Google Scholar
[
Artis, D.A. & Carnahan W.H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ., 12, 313‒329. DOI: 10.1016/0034-4257(82)90043-8.
]Search in Google Scholar
[
Bonafoni, S. (2015). Spectral index utility for summer urban heating analysis. Journal of Applied Remote Sensing, 9, 096030. DOI: 10.1117/1.JRS.9.096030.
]Search in Google Scholar
[
Carlson, T.N. & Ripley D.A. (1997). On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ., 62, 241−252. DOI: 10.1016/S0034-4257(97)00104-1.
]Search in Google Scholar
[
Chen, S., Haase, D., Qureshi, S. & Firozjaei M.K. (2022). Integrated Land Use and Urban Function Impacts on Land Surface Temperature: Implications on Urban Heat Mitigation in Berlin with Eight-Type Spaces. Sustainable Cities and Society, 83, 103944. DOI: 10.1016/j.scs.2022.103944.
]Search in Google Scholar
[
Ezimand, K., Azadbakht, M. & Aghighi H. (2021). Analyzing the effects of 2D and 3D urban structures on LST changes using remotely sensed data. Sustainable Cities and Society, 74, 103216. DOI: 10.1016/j.scs.2021.103216.
]Search in Google Scholar
[
Fu, P. & Weng Q. (2016). A Time Series Analysis of Urbanization Induced Land Use and Land Cover Change and Its Impact on Land Surface Temperature With Landsat Imagery. Remote Sens. Environ., 175, 205–214. DOI: 10.1016/j.rse.2015.12.040.
]Search in Google Scholar
[
Ghaderizadeh, S., Abbasi-Moghadam, D., Sharifi, A., Tariq, A. & Qin S. (2022). Multiscale Dual-Branch Residual Spectral–Spatial Network With Attention for Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5455‒5467. DOI: 10.1109/JSTARS.2022.3188732.
]Search in Google Scholar
[
Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs, J.M. & Grimm N. (2008). Global Change and the Ecology of Cities. Science, 319, 756–760. DOI: 10.1126/science.1150195.
]Search in Google Scholar
[
Guha, S. & Govil H. (2021). A long-term monthly analytical study on the relationship of LST with normalized difference spectral indices. European Journal of Remote Sensing, 54(1), 487−512. DOI: 10.1080/22797254.2021.1965496.
]Search in Google Scholar
[
Guha, S. & Govil H. (2022). Annual assessment on the relationship between land surface temperature and six remote sensing indices using Landsat data from 1988 to 2019. Geocarto International, 37(15), 4292−4311. DOI: 10.1080/10106049.2021.1886339.
]Search in Google Scholar
[
Guha, S., Govil, H., Gill, N. & Dey A. (2021). A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data. Quaternary International, 575−576, 249−258. DOI: 10.1016/j.quaint.2020.06.041.
]Search in Google Scholar
[
Guha, S., Govil, H., Taloor, A.K., Gill, N. & Dey A. (2022). Land surface temperature and spectral indices: A seasonal study of Raipur City. Geodesy and Geodynamics, 13(1), 72−82. DOI: 10.1016/j.geog.2021.05.002.
]Search in Google Scholar
[
Hao, X., Li, W. & Deng H. (2016). The oasis effect and summer temperature rise in arid regions-case study in Tarim Basin. Scientific Reports, 6, 35418. DOI: 10.1038/srep35418.
]Search in Google Scholar
[
Hussain, S., Qin, S., Nasim, W., Bukhari, M.A., Mubeen, M., Fahad, S., Raza, A., Abdo, H.G., Tariq, A., Mousa, B.G., Mumtaz, F. & Aslam M. (2022). Monitoring the Dynamic Changes in Vegetation Cover Using Spatio-Temporal Remote Sensing Data from 1984 to 2020. Atmosphere, 13(10), 1609. DOI: 10.3390/atmos13101609.
]Search in Google Scholar
[
Jalayer, S., Sharifi, A., Abbasi-Moghadam, D., Tariq, A. & Qin S. (2022). Modeling and Predicting Land Use Land Cover Spatiotemporal Changes: A Case Study in Chalus Watershed, Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5496−5513. DOI: 10.1109/JSTARS.2022.3189528.
]Search in Google Scholar
[
Kawamura, M., Jayamana, S. & Tsujiko Y. (1996). Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data. International Archives of the Photo-grammetry and Remtesensing, 31, 321‒326.
]Search in Google Scholar
[
Lee, J., Lee, S.S. & Chi K.H. (2010). Development of an urban classification method using a built-up index. In Proc. 6th WSEAS Int. Conf. on Remote Sensing (pp. 39‒43). Iwate Prefectural University, Japan.
]Search in Google Scholar
[
Majeed, M., Tariq, A., Anwar, M.M., Khan, A.M., Arshad, F., Mumtaz, F., Farhan, M., Zhang, L., Zafar, A., Aziz, M., Abbasi, S., Rahman, G., Hussain, S., Waheed, M., Fatima, K. & Shaukat S. (2021). Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data. Land, 10(10), 1026. DOI: 10.3390/land10101026.
]Search in Google Scholar
[
Nichol, J.E. (2005). Remote Sensing of Urban Heat Islands by Day and Night. Photogrammetric Engineering and Remote Sensing, 19, 1639‒1649. DOI: 10.14358/PERS.71.5.613.
]Search in Google Scholar
[
Rikimaru, A., Roy, P.S. & Miyatake S. (2002). Tropical Forest cover density mapping. Tropical Ecology, 43, 39–47.
]Search in Google Scholar
[
Sekertekin, A. & Zadbagher E. (2021). Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area. Ecological Indicators, 122, 107230. DOI: 10.1016/j.ecolind.2020.107230.
]Search in Google Scholar
[
Sobrino, J.A., Jimenez-Munoz, J.C. & Paolini L. (2004). Land surface temperature retrieval from Landsat TM5. Remote Sens. Environ., 90(4), 434–440. DOI: 10.1016/j.rse.2004.02.003.
]Search in Google Scholar
[
Sobrino, J.A., Raissouni, N. & Li Z.L. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens. Environ., 75(2), 256–266. DOI: 10.1016/S0034-4257(00)00171-1.
]Search in Google Scholar
[
Tariq, A. & Mumtaz F. (2023). Modeling spatio-temporal assessment of land use land cover of Lahore and its impact on land surface temperature using multi-spectral remote sensing data. Environ. Sci. Pollut. Res., 30(9), 23908‒23924. DOI: 10.1007/s11356-022-23928-3.
]Search in Google Scholar
[
Tariq, A., Riaz, I., Ahmad, Z., Yang, B., Amin, M., Kausar, R., Andleeb, S., Farooqi, M.A. & Rafiq M. (2020). Land surface temperature relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environmental Earth Science, 79, 40. DOI: 10.1007/s12665-019-8766-2.
]Search in Google Scholar
[
Tariq, A. & Shu H. (2020). CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Land Cover Change Using Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sensing, 12(20), 3402. DOI: 10.3390/rs12203402.
]Search in Google Scholar
[
Tariq, A., Yan, J., Gagnon, A.S., Khan, M.R. & Mumtaz F. (2023). Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-Spatial Information Science, 26(3), 302‒320. DOI: 10.1080/10095020.2022.2100287.
]Search in Google Scholar
[
Tariq, A., Yan, J. & Mumtaz F. (2022a). Land change modeler and CA-Markov chain analysis for land use land cover change using satellite data of Peshawar, Pakistan. Physics and Chemistry of the Earth, 128, 103286. DOI: 10.1016/j.pce.2022.103286.
]Search in Google Scholar
[
Tariq, A., Mumtaz, F., Zeng, X., Baloch, M.Y.J. & Moazzam M.F.U. (2022b). Spatio-temporal variation of seasonal heat islands mapping of Pakistan during 2000–2019, using day-time and night-time land surface temperatures MODIS and meteorological stations data. Remote Sensing Applications: Society and Environment, 27, 100779. DOI: 10.1016/j.rsase.2022.100779.
]Search in Google Scholar
[
Tomlinson, C.J., Chapman, L., Trones, J.E. & Baker C. (2011). Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Applications, 18, 296–306. DOI: 10.1002/met.287.
]Search in Google Scholar
[
Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M. & Kieu H.V. (2017). Characterizing the Relationship Between Land Use Land Cover Change and Land Surface Temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132. DOI: 10.1016/j.isprsjprs.2017.01.001.
]Search in Google Scholar
[
Weng, Q. (2009) Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 335–344. DOI: 10.1016/j.isprsjprs.2009.03.007.
]Search in Google Scholar
[
Weng, Q.H., Lu, D.S. & Schubring J. (2004). Estimation of Land Surface Temperature–Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens. Environ., 89, 467−483. DOI: 10.1016/j.rse.2003.11.005.
]Search in Google Scholar
[
Zha, Y., Gao, J. & Ni S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens., 24, 583–594. DOI: 10.1080/01431160304987.
]Search in Google Scholar
[
Zhang, Y., Odeh, I.O.A. & Han C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4), 256‒264. DOI: 10.1016/j.jag.2009.03.001.
]Search in Google Scholar
[
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z. & Sobrino J.A. (2019). Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sensing, 11, 48. DOI: 10.3390/rs11010048.
]Search in Google Scholar