[
Aini, A., Curt, T. & Bekdouche F. (2019). Modelling fire hazard in the southern Mediterranean fire rim (Bejaia region, northern Algeria). Environ. Monit. Assess., 191(12), 747. DOI: 10.1007/s10661-019-7931-0.
]Search in Google Scholar
[
Akinci, H.A., Akinci, H. & Zeybek M. (2024). Comparison of diverse machine learning algorithms for forest fire susceptibility mapping in Antalya, Türkiye. Advances in Space Research, 74(2), 647‒667. DOI: 10.1016/j.asr.2024.04.018.
]Search in Google Scholar
[
Allam, A., Borsali, A.H., Kefifa, A., Zouidi, M. & Gros R. (2020). Effect of fires on certain properties of forest soils in Western Algeria. Acta Technologica Agriculturae, 23(3), 111‒117. DOI: 10.2478/ata-2020-0018.
]Search in Google Scholar
[
Belgherbi, B., Benabdeli, K. & Mostefai K. (2018). Mapping the risk forest fires in Algeria: Application of the forest of Guetarnia in Western Algeria. Ekológia (Bratislava), 37(3), 289‒300. DOI: 10.2478/eko-2018-0022.
]Search in Google Scholar
[
Chicas, S.D. & Østergaard Nielsen J. (2022). Who are the actors and what are the factors that are used in models to map forest fire susceptibility? A systematic review. Natural Hazards, 114(3), 2417–2434. DOI: 10.1007/s11069-022-05495-5.
]Search in Google Scholar
[
Cover, T. & Hart P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21‒27. DOI: 10.1109/TIT.1967.1053964.
]Search in Google Scholar
[
Curt, T., Aini, A. & Dupire S. (2020). Fire activity in Mediterranean forests (The Algerian case). Fire, 3(4), 58. DOI: 10.3390/fire3040058.
]Search in Google Scholar
[
Dahmani, R., Borsali, A.H., Merzouk, A., Zouidi, M. & Da Silva A.M.F. (2023). Dynamics of chemical and microbial properties of Algerian forest soils: Influence of natural and anthropogenic factors (Northwest of Tlemcen). Forestry Studies, 78(1), 41‒56. DOI: 10.2478/fsmu-2023-0004.
]Search in Google Scholar
[
Djellouli, Y., Kefifa, A., Nasrallah, Y., Djebbouri, M. & Zouidi M. (2024). Fire risk mapping for Holm Oak forests in El Hassasna Region as part of the ecosystem restoration programme. Advanced Research in Life Sciences, 8(1), 24‒33.
]Search in Google Scholar
[
Ghorbanzadeh, O., Blaschke, T., Gholamnia, K. & Aryal J. (2019). Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire, 2(3), 50. DOI: 10.3390/fire2030050.
]Search in Google Scholar
[
Güngöroğlu, C. (2017). Determination of forest fire risk with fuzzy analytic hierarchy process and its mapping with the application of GIS: the case of Turkey/Çakırlar. Human and Ecological Risk Assessment, 23, 388–406. DOI: 10.1080/10807039.2016.1255136.
]Search in Google Scholar
[
Guryanov, A. (2019). Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees. In W.M.P. van der Aalst, V. Batagelj, D.I. Ignatov, M. Khachay, V. Kuskova, A. Kutuzov, S.O. Kuznetsov, I.A. Lomazova, N. Loukachevitch, A. Napoli, P.M. Pardalos, M. Pelillo, A.V Savchenko & E. Tutubalina (Eds.), Analysis of images, social networks and texts (pp. 39–50). 8th International Conference, AIST 2019, Kazan, Russia, July 17–19, 2019, Revised Selected Papers. Cham: Springer. DOI: 10.1007/978-3-030-37334-4_4.
]Search in Google Scholar
[
Iban, M. C., & Sekertekin A. (2022). Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey. Ecological Informatics, 69, 101647. DOI: 10.1016/j.ecoinf.2022.101647.
]Search in Google Scholar
[
Kheir, M., Lerch, T.Z., Borsali, A.H., Roche, P., Ziarelli, F., Zouidi, M. & Da Silva A.M.F. (2021). Litter microbial responses to climate change: How do inland or coastal context and litter type matter across the Mediterranean?. Ecological Indicators, 125, 107505. DOI: 10.1016/j.ecolind.2021.107505.
]Search in Google Scholar
[
Le, H. Van, Hoang, D.A., Tran, C.T., Nguyen, P.Q., Tran, V.H.T., Hoang, N.D., Amiri, M., Ngo, T.P.T., Nhu, H.V., Hoang, T. Van & Tien Bui D. (2021). A new approach of deep neural computing for spatial prediction of wild-fire danger at tropical climate areas. Ecological Informatics, 63, 101300. DOI: 10.1016/j.ecoinf.2021.101300.
]Search in Google Scholar
[
Lundberg, S.M. & Lee S.I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 2(1), 4766‒4775. DOI: 10.48550/arXiv.1705.07874.
]Search in Google Scholar
[
Matougui, Z., Djerbal, L. & Bahar R. (2023). Bagging Ensemble Based on Multi-Layer Perceptron Neural Network for Landslide Susceptibility Assessment. In 2023 International Conference on Earth Observation and Geo-Spatial Information (ICEOGI), (pp. 1–6). Algeria: IEEE. DOI: 10.1109/ICEOGI57454.2023.10292962.
]Search in Google Scholar
[
Matougui, Z., Djerbal, L. & Bahar R. (2024). A comparative study of heterogeneous and homogeneous ensemble approaches for landslide susceptibility assessment in the Djebahia region, Algeria. Environmental Science and Pollution Research, 31(28), 40554‒40580. DOI: 10.1007/s11356-023-26247-3.
]Search in Google Scholar
[
Moussaoui, M., Sidi, H., Derbak, H. & Bekdouche F. (2022). Post-fire dynamics of the main biogenic nutrients of the forest soil of Jijel, Northeastern Algeria. Ekológia (Bratislava), 41(3), 212‒218. DOI: 10.2478/eko-2022-0021.
]Search in Google Scholar
[
Pazmiño, D. (2019). Peligro de incendios forestales asociado a factores climáticos en Ecuador. FIGEMPA: Investigación y Desarrollo, 7(1), 10‒18. DOI: 10.29166/revfig.v1i1.1800.
]Search in Google Scholar
[
Pereira-Pires, J.E., Aubard, V., Ribeiro, R.A., Fonseca, J.M., Silva, J.M. & Mora A. (2021). Fuel Break Vegetation Monitoring with Sentinel-2 NDVI Robust to Phenology and Environmental Conditions. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 6264‒6267). Brussels: IEEE. DOI: 10.1109/IGARSS47720.2021.9554943.
]Search in Google Scholar
[
Quézel, P. & Médail F. (2003). Ecologie et biogéographie des forêts du bassin méditerranéen. Vol. 572. Paris: Elsevier.
]Search in Google Scholar
[
Sahar, O., Leone, V., Limani, H., Rabia, N. & Meddour R. (2018). Wildfire risk and its perception in Kabylia (Algeria). iForest-Biogeosciences and Forestry, 11(3), 367‒373. DOI: 10.3832/ifor2546-011.
]Search in Google Scholar
[
Yu, Q., Zhao, Y., Yin, Z. & Xu Z. (2024). Wildfire Susceptibility Prediction Based on a CA-Based CCNN with Active Learning Optimization. Fire, 7(6), 201. DOI: 10.3390/fire7060201.
]Search in Google Scholar
[
Yue, W., Ren, C., Liang, Y., Liang, J., Lin, X., Yin, A. & Wei Z. (2023). Assessment of wildfire susceptibility and wildfire threats to ecological environment and urban development based on GIS and multi-source data: A case study of Guilin, China. Remote Sensing, 15(10), 2659. DOI: 10.3390/rs15102659.
]Search in Google Scholar
[
Zhao, L., Ge, Y., Guo, S., Li, H., Li, X., Sun, L. & Chen J. (2024). Forest fire susceptibility mapping based on precipitation-constrained cumulative dryness status information in Southeast China: A novel machine learning modeling approach. For. Ecol. Manag., 558, 121771. DOI: 10.1016/j.foreco.2024.121771.
]Search in Google Scholar