Accesso libero

Plant Community Hemeroby is a Reliable Indicator of the Dynamics of Reclamation of Lands Disturbed by Mining

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Arriaga, F.J., Lowery, B. & Raper R. (2011). Soil penetrometers and penetrability. In Encyclopedia of Earth Sciences Series: Vol. Part 4 (pp. 757–760). Netherlands: Springer. DOI: 10.1007/978-90-481-3585-1_207. Search in Google Scholar

Badin, A.-L., Méderel, G., Béchet, B., Borschneck, D. & Delolme C. (2009). Study of the aggregation of the surface layer of Technosols from stormwater infiltration basins using grain size analyses with laser diffractometry. Geoderma, 153(1–2), 163–171. DOI: 10.1016/j.geoderma.2009.07.022. Search in Google Scholar

Bardgett, R., Bowman, W., Kaufmann, R. & Schmidt S. (2005). A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol., 20(11), 634–641. DOI: 10.1016/j.tree.2005.08.005. Search in Google Scholar

Bécel, C., Vercambre, G. & Pagès L. (2012). Soil penetration resistance, a suitable soil property to account for variations in root elongation and branching. Plant Soil, 353(1–2), 169–180. DOI: 10.1007/s11104-011-1020-7. Search in Google Scholar

Bengough, A.G., McKenzie, B.M., Hallett, P.D. & Valentine T.A. (2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J. Exp. Bot., 62(1), 59–68. DOI: 10.1093/jxb/erq350. Search in Google Scholar

Bieloborodova, M. & Bessonova A. (2023). Approaches to assessing the environmental responsibility of enterprises in the industrial region. Ekológia (Bratislava), 42(3), 267–278. DOI: 10.2478/eko-2023-0030. Search in Google Scholar

Bini, C. & Gaballo S. (2006). Pedogenic trends in anthrosols developed in sulfidic mine spoils: A case study in the Temperino mine archaeological area (Campiglia Marittima, Tuscany, Italy). Quaternary International, 156–157, 70–78. DOI: 10.1016/j.quaint.2006.05.033. Search in Google Scholar

Bradshaw, A. (1997). Restoration of mined lands—using natural processes. Ecological Engineering, 8(4), 255–269. DOI: 10.1016/S0925-8574(97)00022-0. Search in Google Scholar

Bronick, C.J. & Lal R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3–22. DOI: 10.1016/j.geoderma.2004.03.005. Search in Google Scholar

Buta, M., Blaga, G., Paulette, L., Păcurar, I., Roșca, S., Borsai, O., Grecu, F., Sînziana, P.E. & Negrușier C. (2019). Soil reclamation of abandoned mine lands by revegetation in northwestern part of Transylvania: A 40-year retrospective study. Sustainability, 11(12), 3393. DOI: 10.3390/su11123393. Search in Google Scholar

Campbell, L., Sizmur, T., Juanes, F. & Gerwing T.G. (2019). Passive reclamation of soft-sediment ecosystems on the North Coast of British Columbia, Canada. J. Sea Res., 155, 101796. DOI: 10.1016/j.seares.2019.101796. Search in Google Scholar

Cáceres, M.De. (2013). How to use the indicspecies package (ver. 1.7.1). R Project, 29. Search in Google Scholar

de Haas, T. & Schepers M. (2022). Wetland reclamation and the development of reclamation landscapes: A comparative framework. Journal of Wetland Archaeology, 22(1–2), 75–96. DOI: 10.1080/14732971.2022.2072097. Search in Google Scholar

de Lima, C.L.R., Miola, E.C.C., Timm, L.C., Pauletto, E.A. & da Silva A.P. (2012). Soil compressibility and least limiting water range of a constructed soil under cover crops after coal mining in Southern Brazil. Soil Till-age Res., 124, 190–195. DOI: 10.1016/j.still.2012.06.006. Search in Google Scholar

Dexter, A.R., Richard, G., Arrouays, D., Czyż, E.A., Jolivet, C. & Duval O. (2008). Complexed organic matter controls soil physical properties. Geoderma, 144(3–4), 620–627. DOI: 10.1016/j.geoderma.2008.01.022. Search in Google Scholar

Frank, D. & Klotz S. (1990). Biologisch-ökologische Daten zur Flora der DDR. In Wissenschaftliche Beitraäge der Martin-Luther-Universitaät Halle-Wittenberg. Martin-Luther- Universitaät. Search in Google Scholar

Friedman, S.P. (2005). Soil properties influencing apparent electrical conductivity: a review. Comput. Electron. Agric., 46(1–3), 45–70. DOI: 10.1016/j.compag.2004.11.001. Search in Google Scholar

Fu, Y., Lin, C., Ma, J. & Zhu T. (2010). Effects of plant types on physico-chemical properties of reclaimed mining soil in Inner Mongolia, China. Chinese Geographical Science, 20(4), 309–317. DOI: 10.1007/s11769-010-0403-7. Search in Google Scholar

Guan, Y., Wang, J., Zhou, W., Bai, Z. & Cao Y. (2022). Identification of land reclamation stages based on succession characteristics of rehabilitated vegetation in the Pingshuo opencast coal mine. J. Environ. Manag., 305, 114352. DOI: 10.1016/j.jenvman.2021.114352. Search in Google Scholar

Guérif, J. (1990). Factors influencing compaction-induced increases in soil strength. Soil Tillage Res., 16(1–2), 167–178. DOI: 10.1016/0167-1987(90)90028-C. Search in Google Scholar

Gunathunga, S.U., Gagen, E.J., Evans, P.N., Erskine, P.D. & Southam G. (2023). Anthropedogenesis in coal mine overburden; the need for a comprehensive, fundamental biogeochemical approach. Sci. Total Envi-. Total Envi- Total Environ., 892, 164515. DOI: 10.1016/j.scitotenv.2023.164515. Search in Google Scholar

Guzman, J.G., Ussiri, D.A.N. & Lal R. (2019). Soil physical properties following conversion of a reclaimed minesoil to bioenergy crop production. CATENA, 176, 289–295. DOI: 10.1016/j.catena.2019.01.020. Search in Google Scholar

Huot, H., Simonnot, M.-O. & Morel J.L. (2015). Pedogenetic trends in soils formed in technogenic parent materials. Soil Sci., 180(4/5), 182–192. DOI: 10.1097/SS.0000000000000135. Search in Google Scholar

Huot, H., Simonnot, M.O., Watteau, F., Marion, P., Yvon, J., De Donato, P. & Morel J.L. (2014). Early transformation and transfer processes in a Technosol developing on iron industry deposits. Eur. J. Soil Sci., 65(4), 470–484. DOI: 10.1111/ejss.12106. Search in Google Scholar

Iskandar, I., Suryaningtyas, D.T., Baskoro, D.P.T., Budi, S.W., Gozali, I., Suryanto, A., Kirmi, H. & Dultz S. (2022). Revegetation as a driver of chemical and physical soil property changes in a post-mining landscape of East Kalimantan: A chronosequence study. CATENA, 215, 106355. DOI: 10.1016/j.catena.2022.106355. Search in Google Scholar

Jangorzo, N.S., Watteau, F. & Schwartz C. (2013). Evolution of the pore structure of constructed Technosols during early pedogenesis quantified by image analysis. Geoderma, 207–208, 180–192. DOI: 10.1016/j.geoderma.2013.05.016. Search in Google Scholar

Józefowska, A., Woś, B., Sierka, E., Kompała-Bąba, A., Bierza, W., Klamerus-Iwan, A., Chodak, M. & Pietrzykowski M. (2023). How applied reclamation treatments and vegetation type affect on soil fauna in a novel ecosystem developed on a spoil heap of carboniferous rocks. Eur. J. Soil Biol., 119, 103571. DOI: 10.1016/j.ejsobi.2023.103571. Search in Google Scholar

Kozłowski, M., Otremba, K., Pająk, M. & Pietrzykowski M. (2023). Changes in physical and water retention properties of technosols by agricultural reclamation with wheat–rapeseed rotation in a post-mining area of central Poland. Sustainability, 15(9), 7131. DOI: 10.3390/su15097131. Search in Google Scholar

Kroetsch, D. & Wang C. (2008). Particle size distibution. In M.R. Carter & E.G. Gregorich (Eds.), Soil Sampling and Methods of Analysis (pp. 713–726). Boca Raton: CRC Press. Search in Google Scholar

Kumi, F., Obour, P.B., Arthur, E., Moore, S.E., Asare, P.A., Asiedu, J., Angnuureng, D.B., Atiah, K., Amoah, K.K., Amponsah, S.K., Dorvlo, S.Y., Banafo, S. & Adu M.O. (2023). Quantifying root-induced soil strength, measured as soil penetration resistance, from different crop plants and soil types. Soil Tillage Res., 233, 105811. DOI: 10.1016/j.still.2023.105811. Search in Google Scholar

Kunah, O.M., Zelenko, Y.V., Fedushko, M.P., Babchenko, A.V., Sirovatko, V.O. & Zhukov O.V. (2019). The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 27(2), 156–162. DOI: 10.15421/011921. Search in Google Scholar

Kunakh, O.M., Yorkina, N.V., Zhukov, O.V., Turovtseva, N.M., Bredikhina, Y.L. & Logvina-Byk T.A. (2020). Recreation and terrain effect on the spatial variation of the apparent soil electrical conductivity in an urban park. Biosystems Diversity, 28(1), 3–8. DOI: 10.15421/012001. Search in Google Scholar

Lavrinenko, K.V., Didukh, Y.P. & Kuzemko A.A. (2023). Synphytoindication assessment of the steppe part of vegetation of the Syniukha River valley (the Southern Bug catchment area, Ukraine). Ukr. Bot. Zh., 80(2), 143–156. DOI: 10.15407/ukrbotj80.02.143. Search in Google Scholar

Li, C., Ji, Y., Ma, N., Zhang, J., Zhang, H., Ji, C., Zhu, J., Shao, J & Li Y. (2023). Positive effects of vegetation restoration on the soil properties of post-mining land. Plant Soil, 497, 93‒103. DOI: 10.1007/s11104-022-05864-w. Search in Google Scholar

Mborah, C., Bansah, K.J. & Boateng M.K. (2015). Evaluating alternate post-mining land-uses: A review. Environment and Pollution, 5(1), 14. DOI: 10.5539/ep.v5n1p14. Search in Google Scholar

Medvedev, V.V. (2008). Soil structure (methods, genesis, classification, evolution, geography, monitoring, protection). 13 Printing House. Search in Google Scholar

Monserie, M.-F., Watteau, F., Villemin, G., Ouvrard, S. & Morel J.-L. (2009). Technosol genesis: identification of organo-mineral associations in a young Technosol derived from coking plant waste materials. Journal of Soils and Sediments, 9(6), 537–546. DOI: 10.1007/s11368-009-0084-y. Search in Google Scholar

Néel, C., Bril, H., Courtin-Nomade, A. & Dutreuil J.-P. (2003). Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings. Geoderma, 111(1–2), 1–20. DOI: 10.1016/S0016-7061(02)00237-9. Search in Google Scholar

Negara, T., Kusmana, C., Mansur, I. & Santi N.A. (2020). Identifying the key variables for assessing the reclamation success on early growth vegetation in ex-exploration of oil and gas mining areas. Jurnal Manajemen Hutan Tropika (Journal of Tropical Forest Management), 26(3), 222–232. DOI: 10.7226/jtfm.26.3.222. Search in Google Scholar

Rahimi, H., Pazira, E. & Tajik F. (2000). Effect of soil organic matter, electrical conductivity and sodium adsorption ratio on tensile strength of aggregates. Soil Tillage Res., 54(3–4), 145–153. DOI: 10.1016/S0167-1987(00)00086-6. Search in Google Scholar

Reintam, E., Trükmann, K., Kuht, J., Nugis, E., Edesi, L., Astover, A., Noormets, M., Kauer, K., Krebstein, K. & Rannik K. (2009). Soil compaction effects on soil bulk density and penetration resistance and growth of spring barley ( Hordeum vulgare L.). Acta Agric. Scand. Sect. B Plant Soil Sci., 59(3), 265–272. DOI: 10.1080/09064710802030070. Search in Google Scholar

Santini, T.C. & Fey M.V. (2015). Fly ash as a permeable cap for tailings management: pedogenesis in bauxite residue tailings. Journal of Soils and Sediments, 15(3), 552–564. DOI: 10.1007/s11368-014-1038-6. Search in Google Scholar

Savosko, V.M., Bielyk, Y.V., Lykholat, Y.V. & Heilmeier H. (2022). Assesment of heavy metals concentration in initial soils of post-mining landscapes in Kryvyi Rih District (Ukraine). Ekológia (Bratislava), 41(3), 201–211. DOI: 10.2478/eko-2022-0020. Search in Google Scholar

Sena, K.L., Yeager, K.M., Barton, C.D., Lhotka, J.M., Bond, W.E. & Schindler K.J. (2021). Development of mine soils in a chronosequence of forestry-reclaimed sites in Eastern Kentucky. Minerals, 11(4), 422. DOI: 10.3390/min11040422. Search in Google Scholar

Séré, G., Schwartz, C., Ouvrard, S., Renat, J.-C., Watteau, F., Villemin, G. & Morel J.L. (2010). Early pedogenic evolution of constructed Technosols. Journal of Soils and Sediments, 10(7), 1246–1254. DOI: 10.1007/s11368-010-0206-6. Search in Google Scholar

Shein, Y.V., Arhangel’skaya, T.A., Goncharov, V.M., Guber, A.K., Pochatkova, T.N., Sidorova, M.A., Smagin, A.V. & Umarova A.B. (2001). Field and laboratory methods of physical properties and soil status investigations. Moscow: Moscow State University Press. Search in Google Scholar

Shupranova, L., Holoborodko, K., Loza, I., Zhukov, O. & Pakhomov O. (2022). Assessment of Parectopa robiniella Clemens (Lepidoptera: Gracillariidae) Effect on Biochemical Parameters of Robinia pseudoacacia Under Conditions of an Industrial City in Steppe Ukraine. Ekológia (Bratislava), 41(4), 340–350. DOI: 10.2478/eko-2022-0035. Search in Google Scholar

Sun, Y., Li, X., Mander, Ü., He, Y., Jia, Y., Ma, Z., Guo, W. & Xin Z. (2011). Effect of reclamation time and land use on soil properties in Changjiang River Estuary, China. Chinese Geographical Science, 21(4), 403–416. DOI: 10.1007/s11769-011-0482-0. Search in Google Scholar

Thomas, C., Sexstone, A. & Skousen J. (2015). Soil biochemical properties in brown and gray mine soils with and without hydroseeding. Soil, 1(2), 621–629. DOI: 10.5194/soil-1-621-2015. Search in Google Scholar

Tian, Y., Liu, B., Hu, Y., Xu, Q., Qu, M. & Xu D. (2020). Spatio-temporal land-use changes and the response in landscape pattern to hemeroby in a resource-based city. ISPRS International Journal of Geo-Information, 9(1), 20. DOI: 10.3390/ijgi9010020. Search in Google Scholar

Tisdall, J.M. & Oades J.M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33(2), 141–163. DOI: 10.1111/j.1365-2389.1982.tb01755.x. Search in Google Scholar

Unger, P.W. & Kaspar T.C. (1994). Soil compaction and root growth: A review. Agron. J., 86(5), 759–766. DOI: 10.2134/agronj1994.00021962008 600050004x. Search in Google Scholar

Walker, J. & Reddell P. (2007). Retrogressive Succession and Restoration on Old Landscapes. In L.R. Walker, J. Walker & R.J. Hobbs (Eds.), Linking Restoration and Ecological Succession (pp. 69–89). New York: Springer. DOI: 10.1007/978-0-387-35303-6_4. Search in Google Scholar

Walker, L.R., Wardle, D.A., Bardgett, R.D. & Clarkson B.D. (2010). The use of chronosequences in studies of ecological succession and soil development. J. Ecol., 98(4), 725–736. DOI: 10.1111/j.1365-2745.2010.01664.x. Search in Google Scholar

Wei, L., Li, Y., Zhu, Z., Wang, F., Liu, X., Zhang, W., Xiao, M., Li, G., Ding, J., Chen, J., Kuzyakov, Y. & Ge T. (2022). Soil health evaluation approaches along a reclamation consequence in Hangzhou Bay, China. Agric. Eco-. Eco- Ecosyst. Environ., 337, 108045. DOI: 10.1016/j.agee.2022.108045. Search in Google Scholar

Xie, L. & van Zyl D. (2022). How should mine reclamation design effectively respond to climate change? A mini review opinion. Journal of Geoscience and Environment Protection, 10(12), 117–125. DOI: 10.4236/gep.2022.1012009. Search in Google Scholar

Yorkina, N., Goncharenko, I., Lisovets, O. & Zhukov O. (2022). Assessment of naturalness: The response of social behavior types of plants to anthropogenic impact. Ekológia (Bratislava), 41(2), 135–146. DOI: 10.2478/eko-2022-0014. Search in Google Scholar

Yorkina, N., Zhukov, O. & Chromysheva O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekológia (Bratislava), 38(1), 1–10. DOI: 10.2478/eko-2019-0001. Search in Google Scholar

Zadorozhnaya, G.A., Andrusevych, K.V. & Zhukov O.V. (2018). Soil heterogeneity after recultivation: Ecological aspect. Folia Oecologica, 45(1), 46–52. DOI: 10.2478/foecol-2018-0005. Search in Google Scholar

Zhu, C., Zhang, Z., Wang, H., Wang, J. & Yang S. (2020). Assessing soil organic matter content in a coal mining area through spectral variables of different numbers of dimensions. Sensors, 20(6), 1795. DOI: 10.3390/s20061795. Search in Google Scholar

Zhukov, O. & Arabadzhy-Tipenko L. (2021). The ecological interpretation of unbiased estimator for the taxonomic ratio: Different approaches for local and regional flora. Ekológia (Bratislava), 40(4), 348–356. DOI: 10.2478/eko-2021-0036. Search in Google Scholar

Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A. & Umerova A. (2021). Temporal aspect of the terrestrial invertebrate response to moisture dynamic in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands. Ekológia (Bratislava), 40(2), 178–188. DOI: 10.2478/eko-2021-0020. Search in Google Scholar

Zvomuya, F., Larney, F.J., Akinremi, O.O., Lemke, R.L. & Klaassen V.E. (2006). Topsoil replacement depth and organic amendment effects on plant nutrient uptake from reclaimed natural gas wellsites. Can. J. Soil Sci., 86(5), 859–869. DOI: 10.4141/S06-003. Search in Google Scholar

eISSN:
1337-947X
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, Ecology, other, Chemistry, Environmental Chemistry, Geosciences, Geography