1. bookVolume 41 (2022): Edizione 2 (June 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1337-947X
Prima pubblicazione
24 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Influence of Plants on the Spatial Variability of Soil Penetration Resistance

Pubblicato online: 04 Jul 2022
Volume & Edizione: Volume 41 (2022) - Edizione 2 (June 2022)
Pagine: 113 - 125
Ricevuto: 17 Nov 2021
Accettato: 04 May 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
1337-947X
Prima pubblicazione
24 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Soil penetration resistance is an informative indicator to monitor soil compaction, which affects a range of ecological processes in floodplain ecosystems. The aim of the investigation was to reveal the influence of vegetation cover on the spatial variability of penetration resistance of floodplain soils. The study was carried out in the elm oak forest in the floodplain of the Dnipro River (Dniprovsko-Orilsky Nature Reserve, Ukraine). The study of the soil profile morphology was performed in accordance with the guidelines of the field description of soils FAO. The soil penetration resistance was measured in the field using the Eijkelkamp manual penetrometer to a depth of 100 cm at 5-cm intervals within the polygon consisted of 105 sampling points. Vegetation descriptions were made in a 3×3-meter surrounding from each sampling point. The soil penetration resistance was found to regularly increase with increasing depth. The changes in resistance values were insignificant until 25–30 cm depth. After that, there was a sharp increase in penetration resistance up to the depth of 70–75 cm, after which the indicators plateaued. In the three-dimensional aspect, the spatial variation of soil penetration resistance can be fractionated into broad-scale, medium-scale, and fine-scale components. Tree vegetation induces a broad-scale component of soil penetration resistance variations, which embraces the whole soil profile. The herbaceous vegetation induces a medium-scale component, which embraces the upper and middle parts of the soil profile. The fine-scale component is influenced by pedogenic factors.

Keywords

Assouline, S., Tessier, D. & Tavares-Filho J. (1997). Effect of compaction on soil physical and hydraulic properties: Experimental results and modeling. Soil Sci. Soc. Am. J., 61(2), 390. DOI: 10.2136/sssaj1997.0361599 5006100020005x. Apri DOISearch in Google Scholar

Benevenute, P.A.N., Morais, E.G., de Souza, A.A., Vasques, I.C.F., Cardoso, D.P., Sales, F.R., Severiano, E.C., Homem, B.G.C., Casagrande, D.R. & Silva B.M. (2020). Penetration resistance: An effective indicator for monitoring soil compaction in pastures. Ecological Indicators, 117, 106647. DOI: 10.1016/j.ecolind.2020.106647. Apri DOISearch in Google Scholar

Bengough, A.G. (1997). Modelling rooting depth and soil strength in a drying soil profile. J. Theor. Biol., 186(3), 327–338. DOI: 10.1006/jtbi.1996.0367 Apri DOISearch in Google Scholar

Bécel, C., Vercambre, G. & Pagès L. (2012). Soil penetration resistance, a suitable soil property to account for variations in root elongation and branching. Plant Soil, 353(1–2), 169–180. DOI: 10.1007/s11104-011-1020-7. Apri DOISearch in Google Scholar

Binkley, D. & Giardina C. (1998). Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry, 42(1–2), 89–106. DOI: 10.1023/A:1005948126251. Apri DOISearch in Google Scholar

Boivin, P., Schäffer, B., Temgoua, E., Gratier, M. & Steinman G. (2006). Assessment of soil compaction using soil shrinkage modelling: Experimental data and perspectives. Soil Tillage Res., 88(1–2), 65–79. DOI: 10.1016/j.still.2005.04.008. Apri DOISearch in Google Scholar

Borcard, D. & Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model., 153(1–2), 51–68. DOI: 10.1016/S0304-3800(01)00501-4. Apri DOISearch in Google Scholar

Bray, J.R. & Curtis J.T. (1957). Anordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr., 27(4), 325–349. DOI: 10.2307/1942268. Apri DOISearch in Google Scholar

Budakova, V.S., Yorkina, N.V., Telyuk, P.M., Umerova, A.K., Kunakh, O.M. & Zhukov O.V. (2021). Impact of recreational transformation of soil physical properties on micromolluscs in an urban park. Biosystems Diversity, 29(2), 78–87. DOI: 10.15421/012111. Apri DOISearch in Google Scholar

Castrignanò, A., De Giorgio, D., Fornaro, F. & Vonella A.V. (2004). 3D spatial variation of soil impedance as affected by soil tillage. ISCO 2004 – 13th International Soil Conservation Organisation Conference (pp. 1–5). July 2004, Brisbane. Search in Google Scholar

Colombi, T., Torres, L. C., Walter, A. & Keller T. (2018). Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth – A vicious circle. Sci. Total Environ., 626, 1026–1035. DOI: 10.1016/j.scitotenv.2018.01.129.29898511 Apri DOISearch in Google Scholar

Correa, J., Postma, J.A., Watt, M. & Wojciechowski T. (2019). Soil compaction and the architectural plasticity of root systems. J. Exp. Bot., 70(21), 6019–6034. DOI: 10.1093/jxb/erz383.685951431504740 Apri DOISearch in Google Scholar

De Neve, S. & Hofman G. (2000). Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues. Biol. Fertil. Soils, 30(5–6), 544–549. DOI: 10.1007/s003740050034. Apri DOISearch in Google Scholar

Dexter, A.R., Czyż, E.A. & Gaţe O.P. (2007). A method for prediction of soil penetration resistance. Soil Tillage Res., 93(2), 412–419. DOI: 10.1016/j.still.2006.05.011. Apri DOISearch in Google Scholar

Ditzler, C.A., Engel, R.J. & Ahrens R.J. (2002). Soil taxonomy and soil survey. In H. Eswaran, T. Rice, R. Ahrens & B.A. Stewart (Eds.), Soil classification (pp. 1–10). CRC Press. DOI: 10.1201/9781420040364. Apri DOISearch in Google Scholar

Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jom-bart, T., Larocque, G., Legendre, P., Madi, N. & Wagner H.H. (2018). Adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-2. https://CRAN.R-project.org/package=adespatial. https://rdrr.io/rforge/adespatial/ Search in Google Scholar

Dray, S., Pélissier, R., Couteron, P., Fortin, M.J., Legendre, P., Peres-Neto, P.R., Bellier, E., Bivand, R., Blanchet, F.G., De Cáceres, M., Dufour, A.B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J. & Wagner H.H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr., 82(3), 257–275. DOI: 10.1890/11-1183.1. Apri DOISearch in Google Scholar

Fageria, N.K. & Stone L.F. (2006). Physical, chemical, and biological changes in the rhizosphere and nutrient availability. J. Plant Nutr., 29(7), 1327–1356. DOI: 10.1080/01904160600767682. Apri DOISearch in Google Scholar

Flinn, K.M. & Marks P.L. (2007). Agricultural legacies in forest environments: Tree communities, soil properties, and light availability. Ecol. Appl., 17(2), 452–463. DOI: 10.1890/05-1963.17489252 Apri DOISearch in Google Scholar

Gilbert, B. & Bennett J.R. (2010). Partitioning variation in ecological communities: Do the numbers add up? J. Appl. Ecol., 47(5), 1071–1082. DOI: 10.1111/j.1365-2664.2010.01861.x. Apri DOISearch in Google Scholar

Goebes, P., Schmidt, K., Seitz, S., Both, S., Bruelheide, H., Erfmeier, A., Scholten, T. & Kühn P. (2019). The strength of soil-plant interactions under forest is related to a Critical Soil Depth. Scientific Reports, 9(1), 8635. DOI: 10.1038/s41598-019-45156-5.657282331201351 Apri DOISearch in Google Scholar

Holthusen, D., Brandt, A.A., Reichert, J.M. & Horn R. (2018). Soil porosity, permeability and static and dynamic strength parameters under native forest/grassland compared to no-tillage cropping. Soil Tillage Res., 177, 113–124. DOI: 10.1016/j.still.2017.12.003. Apri DOISearch in Google Scholar

Hout, M.C., Papesh, M.H. & Goldinger S.D. (2013). Multidimensional scaling. Wiley Interdisciplinary Reviews: Cognitive Science, 4(1), 93–103. DOI: 10.1002/wcs.1203.355522223359318 Apri DOISearch in Google Scholar

Imhoff, S., Pires da Silva, A., Ghiberto, P.J., Tormena, C.A., Pilatti, M.A. & Libardi P.L. (2016). Physical quality indicators and mechanical behavior of agricultural soils of Argentina. PLOS ONE, 11(4), e0153827. DOI: 10.1371/journal.pone.0153827.483961527099925 Apri DOISearch in Google Scholar

Jahn, R., Blume, H.P., Asio, V., Spaargaren, O. & Schad P. (2006). Guidelines for soil description. Rome: Food and Agriculture Organization of the United Nations. Search in Google Scholar

Jones, C.G., Lawton, J.H. & Shachak M. (1994). Organisms as ecosystem engineers. Oikos, 69(3), 373. DOI: 10.2307/3545850. Apri DOISearch in Google Scholar

Junior, D.D.V., Biachini, A., Valadão, F.C.A. & Rosa R.P. (2014). Penetration resistance according to penetration rate, cone base size and different soil conditions. Bragantia, 73(2), 171–177. DOI: 10.1590/brag.2014.013. Apri DOISearch in Google Scholar

Konôpka, B., Pagès, L. & Doussan C. (2009). Soil compaction modifies morphological characteristics of seminal maize roots. Plant, Soil and Environment, 55(1), 1–10. DOI: 10.17221/380-PSE. Apri DOISearch in Google Scholar

Kovacic, I., Radomirovic, D., Zukovic, M., Pavel, B. & Nikolic M. (2018). Characterisation of tree vibrations based on the model of orthogonal oscillations. Scientific Reports, 8(1), 8558. DOI: 10.1038/s41598-018-26726-5.598677829867094 Apri DOISearch in Google Scholar

Kozlowski, T.T. (1999). Soil compaction and growth of woody plants. Scand. J. For. Res., 14(6), 596–619. DOI: 10.1080/02827589908540825. Apri DOISearch in Google Scholar

Kruskal, J.B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29, 115–129.10.1007/BF02289694 Search in Google Scholar

Krzic, M., Newman, R.F., Broersma, K. & Bomke A.A. (1999). Soil compaction of forest plantations in interior British Columbia. J. Range Manag., 52(6), 671. DOI: 10.2307/4003640. Apri DOISearch in Google Scholar

Kunakh, O.M., Lisovets, O.I., Yorkina, N.V. & Zhukova Y.O. (2021). Phytoindication assessment of the effect of reconstruction on the light regime of an urban park. Biosystems Diversity, 29(3), 84–93. DOI: 10.15421/012135. Apri DOISearch in Google Scholar

Kunakh, O.N., Kramarenko, S.S., Zhukov, A.V., Zadorozhnaya, G.A. & Kramarenko A.S. (2018). Intra-population spatial structure of the land snail Vallonia pulchella (Müller, 1774) (Gastropoda; Pulmonata; Valloniidae). Ruthenica, 28(3), 91–99.10.35885/ruthenica.2018.28(3).1 Search in Google Scholar

Kyle, G.P., Beard, K.H. & Kulmatiski A. (2007). Reduced soil compaction enhances establishment of non-native plant species. Plant Ecol., 193(2), 223–232. DOI: 10.1007/s11258-006-9260-y. Apri DOISearch in Google Scholar

Labelle, E.R., Poltorak, B.J. & Jaeger D. (2019). The role of brush mats in mitigating machine-induced soil disturbances: an assessment using absolute and relative soil bulk density and penetration resistance. Can. J. For. Res., 49(2), 164–178. DOI: 10.1139/cjfr-2018-0324. Apri DOISearch in Google Scholar

Lamandé, M., Hallaire, V., Curmi, P., Pérès, G. & Cluzeau D. (2003). Changes of pore morphology, infiltration and earthworm community in a loamy soil under different agricultural managements. Catena, 54(3), 637–649. DOI: 10.1016/S0341-8162(03)00114-0. Apri DOISearch in Google Scholar

Lecompte, F., Ozier-Lafontaine, H. & Pages L. (2003). An analysis of growth rates and directions of growth of primary roots of field-grown banana trees in an andisol at three levels of soil compaction. Agronomie, 23(3), 209–218. DOI: 10.1051/agro:2002084. Apri DOISearch in Google Scholar

Legendre, L. & Legendre P. (2012). Numerical ecology. Elsevier. Search in Google Scholar

Lucas, M., Schlüter, S., Vogel, H.-J. & Vetterlein D. (2019). Roots compact the surrounding soil depending on the structures they encounter. Scientific Reports, 9(1), 16236. DOI: 10.1038/s41598-019-52665-w.683810531700059 Apri DOISearch in Google Scholar

Medina, C., Camacho-Tamayo, J.H. & Cortés C.A. (2012). Soil penetration resistance analysis by multivariate and geostatistical methods. Engenharia Agrícola, 32(1), 91–101. DOI: 10.1590/S0100-69162012000100010. Apri DOISearch in Google Scholar

Medvedev, V.V. (2009). Soil penetration resistance and penetrographs in studies of tillage technologies. Eurasian Soil Science, 42(3), 299–309. DOI: 10.1134/S1064229309030077. Apri DOISearch in Google Scholar

Mohanty, M., Painuli, D. & Mandal K. (2004). Effect of puddling intensity on temporal variation in soil physical conditions and yield of rice (Oryza sativa L.) in a Vertisol of central India. Soil Tillage Res., 76(2), 83–94. DOI: 10.1016/j.still.2003.08.006. Apri DOISearch in Google Scholar

Mohanty, M. & Patra H.K. (2012). Effect of chelate-assisted Hhxavalent chromium on physiological changes, biochemical alterations, and chromium bioavailability in crop plants–an in vitro phytoremediation approach. Bioremediat. J., 16(3), 147–155. DOI: 10.1080/10889868.2012.687414. Apri DOISearch in Google Scholar

Mossadeghi-Björklund, M., Arvidsson, J., Keller, T., Koestel, J., Lamandé, M., Larsbo, M. & Jarvis N. (2016). Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil. Soil Tillage Res., 156, 91–98. DOI: 10.1016/j.still.2015.09.013. Apri DOISearch in Google Scholar

Mossadeghi-Björklund, M., Jarvis, N., Larsbo, M., Forkman, J. & Keller T. (2019). Effects of compaction on soil hydraulic properties, penetration resistance and water flow patterns at the soil profile scale. Soil Use Manag., 35(3), 367–377. DOI: 10.1111/sum.12481. Apri DOISearch in Google Scholar

Nawaz, M.F., Bourrié, G. & Trolard F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2), 291–309. DOI: 10.1007/s13593-011-0071-8. Apri DOISearch in Google Scholar

Netsvetov, M. & Nikulina V. (2010). Seasonal variations of oscillation and vibration parameters of Acer platanoides. Dendrobiology, 64, 37–42. Search in Google Scholar

Nsabimana, G., Bao, Y., He, X., Nambajimana, J. de D., Wang, M., Yang, L., Li, J., Zhang, S. & Khurram D. (2020). Impacts of water level fluctuations on soil aggregate stability in the Three Gorges Reservoir, China. Sustainability, 12(21), 9107. DOI: 10.3390/su12219107. Apri DOISearch in Google Scholar

Oijen, D., Feijen, M., Hommel, P., Ouden, J. & Waal R. (2005). Effects of tree species composition on within-forest distribution of understorey species. Appl. Veg. Sci., 8(2), 155–166. DOI: 10.1111/j.1654-109X.2005.tb00641.x. Apri DOISearch in Google Scholar

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McG-linn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner H. (2019). vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. https://cran.r-project.org/package=vegan. Search in Google Scholar

Plum, N. (2005). Terrestrial invertebrates in flooded grassland: A literature review. Wetlands, 25(3), 721–737. DOI: 10.1672/0277-5212(2005)025[0721:TIIFGA]2.0.CO;2. Apri DOISearch in Google Scholar

Prokof ’eva, T., Umarova, A., Bykova, G., Suslenkova, M., Ezhelev, Z., Kokoreva, A., Gasina, A. & Martynenko I. (2021). Morphological and physical properties in diagnostics of urban soils: case study from Moscow, Russia. Soil Science Annual, 71(4), 309–320. DOI: 10.37501/soilsa/131598. Apri DOISearch in Google Scholar

Raunkiaer, C. (1937). Plant life forms. Oxford: Clarendon Press. Search in Google Scholar

Roesch, A., Weisskopf, P., Oberholzer, H., Valsangiacomo, A. & Nemecek T. (2019). An approach for describing the effects of grazing on soil quality in life-cycle assessment. Sustainability, 11(18), 4870. DOI: 10.3390/su11184870. Apri DOISearch in Google Scholar

Rozanov, B.G. (2004). Soil morphology (in Russian). Moscow: Moscow University Press. Search in Google Scholar

Schjønning, P., Lamandé, M., Munkholm, L.J., Lyngvig, H.S. & Nielsen J.A. (2016). Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils. Soil Tillage Res., 163, 298–308. DOI: 10.1016/j.still.2016.07.003. Apri DOISearch in Google Scholar

Sinnett, D., Morgan, G., Williams, M. & Hutchings T.R. (2008). Soil penetration resistance and tree root development. Soil Use Manag., 24(3), 273–280. DOI: 10.1111/j.1475-2743.2008.00164.x. Apri DOISearch in Google Scholar

Tekin, Y., Kul, B. & Okursoy R. (2008). Sensing and 3D mapping of soil compaction. Sensors, 8(5), 3447–3459. DOI: 10.3390/s8053447. Apri DOISearch in Google Scholar

Tracy, S.R., Black, C.R., Roberts, J.A. & Mooney S.J. (2011). Soil compaction: a review of past and present techniques for investigating effects on root growth. J. Sci. Food Agric., 91(9), 1528–1537. DOI: 10.1002/jsfa.4424. Apri DOISearch in Google Scholar

Unger, P.W. & Kaspar T.C. (1994). Soil compaction and root Growth: A review. Agron. J., 86(5), 759–766. DOI: 10.2134/agronj1994.00021962008 600050004x. Apri DOISearch in Google Scholar

Vaz, C.M., Bassoi, L.H. & Hopmans J.W. (2001). Contribution of water content and bulk density to field soil penetration resistance as measured by a combined cone penetrometer–TDR probe. Soil Tillage Res., 60(1–2), 35–42. DOI: 10.1016/S0167-1987(01)00173-8. Apri DOISearch in Google Scholar

Vocanson, A., Roger-Estrade, J., Boizard, H. & Jeuffroy M.H. (2006). Effects of soil structure on pea (Pisum sativum L.) root development according to sowing date and cultivar. Plant Soil, 281(1–2), 121–135. DOI: 10.1007/s11104-005-3938-0. Apri DOISearch in Google Scholar

Voronin, A.D. (1984). Structural-functional hydrophysics of soils (in Russian). Moscow: Moscow State University Press. Search in Google Scholar

Wang, X., Wang, C., Wang, X. & Huo Z. (2020). Response of soil compaction to the seasonal freezing-thawing process and the key controlling factors. CATENA, 184, 104247. DOI: 10.1016/j.catena.2019.104247. Apri DOISearch in Google Scholar

Warton, D.I., Wright, S.T. & Wang Y. (2012). Distance-based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution, 3(1), 89–101. DOI: 10.1111/j.2041-210X.2011.00127.x. Apri DOISearch in Google Scholar

Watson, G.W. & Kelsey P. (2006). The impact of soil compaction on soil aeration and fine root density of Quercus palustris. Urban Forestry and Urban Greening, 4(2), 69–74. DOI: 10.1016/j.ufug.2005.08.001. Apri DOISearch in Google Scholar

Westhoff, V. & Van Der Maarel E. (1978). The Braun-Blanquet Approach. In R.H. Whittaker (Ed.), Classification of plant communities (pp. 287–399). Dordrecht: Springer. DOI: 10.1007/978-94-009-9183-5_9. Apri DOISearch in Google Scholar

WRB (2014). World Reference Base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO. Search in Google Scholar

Xu, J., Tang, Y. & Zhou J. (2017). Effect of drying–wetting cycles on aggregate breakdown for yellow–brown earths in karst areas. Geoenvironmental Disasters, 4(1), 20. DOI: 10.1186/s40677-017-0084-y. Apri DOISearch in Google Scholar

Yakovenko, V. (2017). Fractal properties of coarse/fine-related distribution in forest soils on colluvium. In Soil Science Working for a Living (pp. 29–42). Cham: Springer International Publishing. DOI: 10.1007/978-3-319-45417-7_3. Apri DOISearch in Google Scholar

Yakovenko, V. & Zhukov O. (2021). Zoogenic structure aggregation in steppe and forest soils. In Y. Dmytruk & D. Dent (Eds.), Soils under stress (pp. 111–127). Cham: Springer International Publishing. DOI: 10.1007/978-3-030-68394-8_12. Apri DOISearch in Google Scholar

Yao, S., Teng, X. & Zhang B. (2015). Effects of rice straw incorporation and tillage depth on soil puddlability and mechanical properties during rice growth period. Soil Tillage Res., 146, 125–132. DOI: 10.1016/j. still.2014.10.007. Apri DOISearch in Google Scholar

Yorkina, N., Maslikova, K., Kunah, O. & Zhukov O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17(1), 29–45.10.37828/em.2018.17.5 Search in Google Scholar

Yorkina, N.V., Podorozhniy, S.M., Velcheva, L.G., Honcharenko, Y.V. & Zhukov O.V. (2020). Applying plant disturbance indicators to reveal the hemeroby of soil macrofauna species. Biosystems Diversity, 28(2), 181–194. DOI: 10.15421/012024. Apri DOISearch in Google Scholar

Yudina, A.V., Fomin, D.S., Kotelnikova, A.D. & Milanovskii E.Y. (2018). From the notion of elementary soil particle to the particle-size and microaggregate-size distribution analyses: A review. Eurasian Soil Science, 51(11), 1326–1347. DOI: 10.1134/S1064229318110091. Apri DOISearch in Google Scholar

Zadorozhnaya, G.A., Andrusevych, K.V. & Zhukov O.V. (2018). Soil heterogeneity after recultivation: Ecological aspect. Folia Oecologica, 45(1), 46–52. DOI: 10.2478/foecol-2018-0005. Apri DOISearch in Google Scholar

Zelený, D. (2016). Adjusted R2 in partial constrained ordination: the difference between R (vegan) and CANOCO 5. David Zelený Blog. http://davidzeleny.net/blog/2016/09/08/adjusted-r2-in-partial-constrained-ordination-the-difference-between-r-vegan-and-canoco-5/ Search in Google Scholar

Zhang, Y., Zhang, Z., Ma, Z., Chen, J., Akbar, J., Zhang, S., Che, C., Zhang, M. & Cerdà A. (2018). A review of preferential water flow in soil science. Can. J. Soil Sci., 98(4), 604–618. DOI: 10.1139/cjss-2018-0046. Apri DOISearch in Google Scholar

Zhukov, A. & Gadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: The ecological approach. Ekológia (Bratislava), 35(3), 263–278. DOI: 10.1515/eko-2016-0021. Apri DOISearch in Google Scholar

Zhukov, O., Kunah, O., Dubinina, Y., Zhukova, Y. & Ganzha D. (2019). The effect of soil on spatial variation of the herbaceous layer modulated by overstorey in an Eastern European poplar-willow forest. Ekológia (Bratislava), 38(3), 253–272. DOI: 10.2478/eko-2019-0020. Apri DOISearch in Google Scholar

Zhukov, O.V., Kunah, O.M. & Dubinina Y.Y. (2017). Sensitivity and resistance of communities: Evaluation on the example of the influence of edaphic, vegetation and spatial factors on soil macrofauna. Biosystems Diversity, 25(4), 328–341. DOI: 10.15421/011750. Apri DOISearch in Google Scholar

Zhukov, O.V., Kunah, O.M., Dubinina, Y.Y., Fedushko, M.P., Kotsun, V.I., Zhukova, Y.O. & Potapenko O.V. (2019). Tree canopy affects soil macro-fauna spatial patterns on broad- And meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica, 46(2), 101–114. DOI: 10.2478/foecol-2019-0013. Apri DOISearch in Google Scholar

Zhukov, O.V., Kunah, O.M., Dubinina, Y.Y. & Novikova V.O. (2018). The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river. Folia Oecologica, 45(1), 8–23. DOI: 10.2478/foecol-2018-0002. Apri DOISearch in Google Scholar

Zhukova, Y.O., Yorkina, N.V., Budakova, V.S. & Kunakh O.M. (2020). The small-scale variation of herb-layer community structure in a riparian mixed forest. Biosystems Diversity, 28(4), 390–398. DOI: 10.15421/012050. Apri DOISearch in Google Scholar

Zinke, P.J. (1962). The pattern of influence of individual forest trees on soil properties. Ecology, 43(1), 130–133. DOI: 10.2307/1932049. Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo