1. bookVolume 41 (2022): Edizione 1 (March 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1337-947X
Prima pubblicazione
24 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Temporal Dynamics of Soil Invertebrate Communities in a Vineyard Under Treatment with Pesticides

Pubblicato online: 22 Apr 2022
Volume & Edizione: Volume 41 (2022) - Edizione 1 (March 2022)
Pagine: 26 - 34
Ricevuto: 26 Sep 2021
Accettato: 20 Dec 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
1337-947X
Prima pubblicazione
24 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Phytosanitary treatments with pesticides are widely used to control pests and diseases in vineyards. An important part of the dispersed pesticide reaches the soil, affecting the fauna, producing quantitative and qualitative changes in the edaphic population’s structure and physiological activities. This study aims to evaluate the temporal dynamics of the soil macro and mesofauna through different pesticide treatment periods, where fungicides are the dominant pest control agent. A field experiment was carried out in Boumerdes, a specific viticultural region in Algeria. Soil samples were taken during three periods, before, during, and after treatment with pesticides, using the quadrat method at three soil depths. During these three periods, the soil macro and mesofauna were observed and compared. The results showed significant differences in the composition of invertebrate communities that tended to disappear during pesticide application. The structure and diversity of 11 invertebrate classes, including Collembola, changed along the treatment gradient. The effects of sampling periods on occurrence, abundance, and taxon richness were consistently negative. These indices were significantly lower after pesticide application. Therefore, we can suppose that climatic factors and pesticide treatements are the main factors affecting the activity and density of all classes of invertebrates, but these effects vary between the functional groups of soil biota.

Keywords

Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J. C. & García-Río L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ., 123(4), 247–260. DOI: 10.1016/j.agee.2007.07.011.10.1016/j.agee.2007.07.011 Search in Google Scholar

Bart, S., Barraud, A., Amossé, J., Péry, A. R. R., Mougin, C. & Pelosi C. (2019). Effects of two common fungicides on the reproduction of Aporrectodea caliginosa in natural soil. Ecotoxicol. Environ. Saf., 181(1), 518–524. DOI: 10.1016/j.ecoenv.2019.06.049.10.1016/j.ecoenv.2019.06.04931234066 Search in Google Scholar

Bogyó, D., Magura, T., Nagy, D.D. & Tóthmérész B. (2015). Distribution of millipedes (Myriapoda, diplopoda) along a forest interior – forest edge – grassland habitat complex. Zookeys, 510, 181–195. DOI: 10.3897/zookeys.510.8657.10.3897/zookeys.510.8657452377226257542 Search in Google Scholar

Booth, L.H., Bithell, S.L., Wratten, S.D. & Heppelthwaite V.J. (2003). Vineyard pesticides and their effects on invertebrate biomarkers and bioindicator species in New Zealand. Bull. Environ. Contam. Toxicol., 71(6), 1131–1138. DOI: 10.1007/s00128-003-8879-9.10.1007/s00128-003-8879-914756280 Search in Google Scholar

Brygadyrenko, V. (2016). Effect of canopy density on litter invertebrate community structure in pine forests. Ekológia (Bratislava), 35(1), 90−102. DOI: 10.1515/eko-2016-0007.10.1515/eko-2016-0007 Search in Google Scholar

Buchholz, J., Querner, P., Paredes, D., Bauer, T., Strauss, P., Guernion, M., Scimia, J., Cluzeau, D., Burel, F., Kratschmer, S., Winter, S., Potthoff, M. & Zaller J.G. (2017). Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape. Scientific Reports, 7(1), 1–12. DOI: 10.1038/s41598-017-17601-w.10.1038/s41598-017-17601-w572717329234045 Search in Google Scholar

Burgio, G., Marchesini, E., Reggiani, N., Montepaone, G., Schiatti, P. & Sommaggio D. (2016). Habitat management of organic vineyard in Northern Italy: The role of cover plants management on arthropod functional biodiversity. Bull. Entomol. Res., 106(6), 759–768. DOI: 10.1017/S0007485316000493.10.1017/S000748531600049327312132 Search in Google Scholar

Cortet, J., Joffre, R., Elmholt, S. & Krogh P.H. (2003). Increasing species and trophic diversity of mesofauna affects fungal biomass, mesofauna community structure and organic matter decomposition processes. Biol. Fertil. Soils, 37(5), 302–312. DOI: 10.1007/s00374-003-0597-2.10.1007/s00374-003-0597-2 Search in Google Scholar

DAS (2019). Directorate of agricultural services. Tizi-Ouzou: DAS National Agricultural Statistics Services. Search in Google Scholar

David, J.F., Devernay, S., Loucougaray, G. & Le Floc’h E. (1999). Belowground biodiversity in a Mediterranean landscape: relationships between saprophagous macroarthropod communities and vegetation structure. Biodivers. Conserv., 8, 753–767. DOI: 10.1023/A:1008842313832.10.1023/A:1008842313832 Search in Google Scholar

De Silva, P.M.C.S., Pathiratne, A. & van Gestel C.A.M. (2009). Influence of temperature and soil type on the toxicity of three pesticides to Eisenia Andrei. Chemosphere, 76(10), 1410–1415. DOI: 10.1016/j.chemosphere.2009.06.006.10.1016/j.chemosphere.2009.06.00619577793 Search in Google Scholar

EFSA (2007). Opinion of the Scientific Panel on Plant protection products and their residues (PPR) related to the revision of Annexes II and III to Council Directive 91/414/EEC concerning the placing of plant protection products on the market - Fate and Behaviour in t. EFSA Journal, 5(2), 1–44. DOI: 10.2903/j.efsa.2007.448.10.2903/j.efsa.2007.448 Search in Google Scholar

El Titi, A. (2003). Non-inversion tillage in integrated farming concepts: prospects and constraints of cropping systems in the southwest of Germany. In L. Garcia-Torres, J. Benites, A. Martinez-Vilela & A. Holgado-Cabrera (Eds.), Conservation agriculture (pp. 211−219). Dordrecht: Springer. DOI: 10.1007/978-94-017-1143-2_26.10.1007/978-94-017-1143-2_26 Search in Google Scholar

Faber, F., Wachter, E. & Zaller J.G. (2017). Earthworms are little affected by reduced soil tillage methods in vineyards. Plant, Soil and Environment, 63(6), 257–263. DOI: 10.17221/160/2017-PSE.10.17221/160/2017-PSE Search in Google Scholar

Fiera, C., Ulrich, W., Popescu, D., Buchholz, J., Querner, P., Bunea, C.I., Strauss, P., Bauer, T., Kratschmer, S., Winter, S. & Zaller J. G. (2020a). Tillage intensity and herbicide application influence surface-active springtail (Collembola) communities in Romanian vineyards. Agric. Ecosyst. Environ., 300, 107006. DOI: 10.1016/j.agee.2020.107006.10.1016/j.agee.2020.107006 Search in Google Scholar

Fiera, C., Ulrich, W., Popescu, D., Bunea, C.I., Manu, M., Nae, I., Stan, M., Markó, B., Urák, I., Giurginca, A., Penke, N., Winter, S., Kratschmer, S., Buchholz, J., Querner, P. & Zaller J.G. (2020b). Effects of vineyard inter-row management on the diversity and abundance of plants and surface-dwelling invertebrates in Central Romania. J. Insect Conserv., 24(1), 175–185. DOI: 10.1007/s10841-019-00215-0.10.1007/s10841-019-00215-0700232832089639 Search in Google Scholar

Frampton, G.K. & van den Brink P.J. (2007). Collembola and macroarthropod community responses to carbamate, organophosphate and synthetic pyrethroid insecticides: Direct and indirect effects. Environ. Pollut., 147(1), 14–25. DOI: 10.1016/j.envpol.2006.08.038.10.1016/j.envpol.2006.08.03817056169 Search in Google Scholar

Frouz, J., Livečková, M., Albrechtová, J., Chroňáková, A., Cajthaml, T., Pižl, V., Háněl, L., Starý, J., Baldrian, P., Lhotáková, Z., Šimáčková, H. & Cepáková Š. (2013). Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. For. Ecol. Manag., 309, 87–95. DOI: 10.1016/j.foreco.2013.02.013.10.1016/j.foreco.2013.02.013 Search in Google Scholar

Gan, H. & Wickings K. (2017). Soil ecological responses to pest management in golf turf vary with management intensity, pesticide identity, and application program. Agric. Ecosyst. Environ., 246, 66–77. DOI: 10.1016/j.agee.2017.05.014.10.1016/j.agee.2017.05.014 Search in Google Scholar

Ghosal, A., Hati, A., Mal, S., Mukherjee, A. & Mukherjee A. (2018). Impact of some new generation insecticides on beneficial rhizospheric microorganisms in rice maize cropping system. International Journal of Current Microbiology and Applied Sciences, 7(05), 666–676. DOI: 10.20546/ijcmas.2018.705.081.10.20546/ijcmas.2018.705.081 Search in Google Scholar

Harta, I., Simon, B., Vinogradov, S. & Winkler D. (2020). Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area. J. For. Res., 32, 1819–1832. DOI: 10.1007/s11676-020-01238-z.10.1007/s11676-020-01238-z Search in Google Scholar

Holland, J. M., Frampton, G. K., Çilgi, T. & Wratten S.D. (1994). Arable acronyms analysed – a review of integrated arable farming systems research in Western Europe. Ann. Appl. Biol., 125(2), 399–438. DOI: 10.1111/j.1744-7348.1994.tb04980.x.10.1111/j.1744-7348.1994.tb04980.x Search in Google Scholar

Irmler, U. (2006). Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. Eur. J. Soil Biol., 42 (1), 51–62. DOI: 10.1016/j.ejsobi.2005.09.016.10.1016/j.ejsobi.2005.09.016 Search in Google Scholar

Marichal, R., Praxedes, C., Decaëns, T., Grimaldi, M., Oszwald, J., Brown, G. G., Desjardins, T., da Silva, M. L., Feijoo Martinez, A., Oliveira, M. N. D., Velasquez, E. & Lavelle P. (2017). Earthworm functional traits, landscape degradation and ecosystem services in the Brazilian Amazon deforestation arc. Eur. J. Soil Biol., 83, 43–51. DOI: 10.1016/j.ejsobi.2017.09.003.10.1016/j.ejsobi.2017.09.003 Search in Google Scholar

McCravy, K. (2018). A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects, 9(4), 170. DOI: 10.3390/insects9040170.10.3390/insects9040170 Search in Google Scholar

Natal-da-Luz, T., Moreira-Santos, M., Ruepert, C., Castillo, L.E., Ribeiro, R. & Sousa J.P. (2012). Ecotoxicological characterization of a tropical soil after diazinon spraying. Ecotoxicology, 21(8), 2163–2176. DOI: 10.1007/s10646-012-0970-8.10.1007/s10646-012-0970-8 Search in Google Scholar

Oerke, E. (2006). Crop losses to pests. J. Agric. Sci., 144(1), 31−43. DOI: 10.1017/S0021859605005708.10.1017/S0021859605005708 Search in Google Scholar

Paoletti, M.G. (1999). The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ., 74(1−3), 137–155. DOI: 10.1016/S0167-8809(99)00034-1.10.1016/S0167-8809(99)00034-1 Search in Google Scholar

Parisi, V., Menta, C., Gardi, C., Jacomini, C. & Mozzanica E. (2005). Micro-arthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric. Ecosyst. Environ., 105(1−2), 323−333. DOI: 10.1016/j.agee.2004.02.002.10.1016/j.agee.2004.02.002 Search in Google Scholar

Peck, D.C. (2009). Long-term effects of imidacloprid on the abundance of surface- and soil-active non-target fauna in turf. Agric. For. Entomol., 11(4), 405–419. DOI: 10.1111/j.1461-9563.2009.00454.x.10.1111/j.1461-9563.2009.00454.x Search in Google Scholar

Pelosi, C., Barot, S., Capowiez, Y., Hedde, M. & Vandenbulcke F. (2014). Pesticides and earthworms. A review. Agronomy Sustainable Development, 34(1), 199–228. DOI: 10.1007/s13593-013-0151-z.10.1007/s13593-013-0151-z Search in Google Scholar

Pennington, T., Reiff, J. M., Theiss, K., Entling, M.H. & Hoffmann C. (2018). Reduced fungicide applications improve insect pest control in grapevine. BioControl, 63(5), 687–695. DOI: 10.1007/s10526-018-9896-2.10.1007/s10526-018-9896-2 Search in Google Scholar

Petersen, H. (2002). General aspects of collembolan ecology at the turn of the millennium Proceedings of the Xth international Colloquium on Apterygota, České Budějovice 2000: Apterygota at the Beginning of the Third Millennium. Pedobiologia, 46(3−4), 246−260. DOI: 10.1016/s0031-4056(04)70140-7.10.1016/S0031-4056(04)70140-7 Search in Google Scholar

Pfingstmann, A., Paredes, D., Buchholz, J., Querner, P., Bauer, T., Strauss, P., Kratschmer, S., Winter, S. & Zaller J. (2019). Contrasting effects of tillage and landscape structure on spiders and springtails in vineyards. Sustainability (Switzerland), 11(7), 1–14. DOI: 10.3390/su1102095. Search in Google Scholar

Pryke, J.S., Roets, F. & Samways M.J. (2013). Importance of habitat heterogeneity in remnant patches for conserving dung beetles. Biodivers Conserv., 22(12), 2857–2873. DOI: 10.1007/s10531-013-0559-4.10.1007/s10531-013-0559-4 Search in Google Scholar

Rosell, G., Quero, C., Coll, J. & Guerrero A. (2008). Biorational insecticides in pest management. J. Pestic. Sci., 33(2), 103–121. DOI: 10.1584/jpestics.R08-01.10.1584/jpestics.R08-01 Search in Google Scholar

Santos, M.J.G., Ferreira, M.F.L., Cachada, A., Duarte, A.C. & Sousa J.P. (2012). Pesticide application to agricultural fields: Effects on the reproduction and avoidance behaviour of Folsomia candida and Eisenia andrei. Ecotoxicology, 21(8), 2113–2122. DOI: 10.1007/s10646-012-0963-7.10.1007/s10646-012-0963-722711551 Search in Google Scholar

Sáenz-Romo, M.G., Veas-Bernal, A., Martínez-García, H., Campos-Herrera, R., Ibáñez-Pascual, S., Martínez-Villar, E., Pérez-Moreno, I. & Marco-Mancebón V.S. (2019). Ground cover management in a Mediterranean vineyard: Impact on insect abundance and diversity. Agric. Ecosyst. Environ., 283, 106571. DOI: 10.1016/j.agee.2019.106571.10.1016/j.agee.2019.106571 Search in Google Scholar

Sánchez-Moreno, S., Castro, J., Alonso-Prados, E., Alonso-Prados, J. L., García-Baudín, J. M., Talavera, M. & Durán-Zuazo V.H. (2015). Till-age and herbicide decrease soil biodiversity in olive orchards. Agronomy Sustainable Development, 35(2), 691–700. DOI: 10.1007/s13593-014-0266-x.10.1007/s13593-014-0266-x Search in Google Scholar

Seres, A., Posta, K., Bakonyi, G., Nagy, P., Kiss, I., Fábián, M., Répási, V. & Nosek J.N. (2009). Collembola decrease the nitrogen uptake of maize through arbuscular mycorrhiza. Ekológia (Bratislava), 28(3), 242−247. DOI: 10.4149/ekol_2009_03_242.10.4149/ekol_2009_03_242 Search in Google Scholar

Sharley, D.J., Hoffmann, A.A. & Thomson L.J. (2008). The effects of soil tillage on beneficial invertebrates within the vineyard. Agricultural and Forest Entomology, 10(3), 233–243. DOI: 10.1111/j.1461-9563.2008.00376.x.10.1111/j.1461-9563.2008.00376.x Search in Google Scholar

Thorbek, A.P., Bilde, T., Thorbek, P. & Bildett T. (2017). Reduced numbers of generalist arthropod predators after crop management. J. Appl. Ecol., 41(3), 526–538. DOI: 10.1111/j.0021-8901.2004.00913.x.10.1111/j.0021-8901.2004.00913.x Search in Google Scholar

Vogelweith, F. & Thiéry D. (2018). An assessment of the non-target effects of copper on the leaf arthropod community in a vineyard. Biol. Control., 127, 94–100. DOI: 10.1016/j.biocontrol.2018.08.011.10.1016/j.biocontrol.2018.08.011 Search in Google Scholar

Wu, P. & Wang C. (2019). Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: the significance for soil fauna diversity monitoring. Geoderma, 337, 266–272. DOI: 10.1016/j.geoderma.2018.09.031.10.1016/j.geoderma.2018.09.031 Search in Google Scholar

Zortéa, T., dos Reis, T.R., Serafini, S., de Sousa, J.P., da Silva, A.S. & Baretta D. (2018). Ecotoxicological effect of fipronil and its metabolites on Folsomia candida in tropical soils. Environ. Toxicol. Pharmacol., 62, 203–209. DOI: 10.1016/j.etap.2018.07.011.10.1016/j.etap.2018.07.01130077901 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo