Accesso libero

Photophysical Investigations of the Organic Compounds Synthesised from Waste Poly(Ethylene Terephthalate)

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Nistico R. Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing. 2020;90:106707. DOI: 10.1016/j.polymertesting.2020.106707. Search in Google Scholar

Chen S, Xie S, Guang S, Bao J, Zhang X, Chen W. Crystallization and thermal behaviors of poly(ethylene terephthalate)/bisphenols complexes through melt post-polycondensation. Polymers. 2020;12:3053. DOI: 10.3390/polym12123053. Search in Google Scholar

Suhaimi NAS, Muhamad F, Razak NAA, Zeimaran E. Recycling of polyethylene teraphthalate wastes: A review of technologies, routes, and applications. Polymer Eng Sci. 2022:1-21. DOI: 10.1002/pen.26017. Search in Google Scholar

Barber NA. Polyethylene Teraphthalate Uses, Properties and Degradation. New York: Nova Science Publishers, Inc; 2017. ISBN: 9781536119916. Search in Google Scholar

Qian K, Kumar A. Recent advances in utilization of biochar. Renew Sust Energy Rev. 2015;42:1055-64. DOI: 10.1016/j.rser.2014.10.074. Search in Google Scholar

Rabek JF. Polimery i ich zastosowanie interdyscyplinarne (Polymers and their interdisciplinary applications). Warszawa: Wydawnictwo Naukowe PWN; 2020. ISBN: 9788301210007. Search in Google Scholar

Saebea D, Ruengrit P, Arpornwichanop A, Patcharavorachot Y. Gasification of plastic waste for synthesis gas production. Energy Reports. 2020;6:202-07. DOI: 10.1016/j.egyr.2019.08.043. Search in Google Scholar

Soong YHV, Sobkowicz MJ, Xie D. Recent advances in biological recycling of polyethylene. Bioengineering. 2022;9:1-27. DOI: 10.3390/bioengineering9030098. Search in Google Scholar

Dissanayake L, Jayakody LN. Engineering microbes to bio-upcycle polyethylene terephthalate. Front Bioeng Biotechnol. 2021;2:656465. DOI: 10.3389/fbioe.2021.656465. Search in Google Scholar

Sabu T, Kanny K, Thomas MG, Rane A, Abitha VK. Recycling of Polyethylene Terephthalate Bottles. New York: Elsevier Inc; 2018. ISBN: 9780128113615. DOI: 10.1016/C2016-0-01084-7. Search in Google Scholar

Yue H, Zhao Y, Ma X, Gong J. Ethyleneglycol: properties, synthesis, and applications. Chem Soc Rev. 2012;41:4218-44. DOI: 10.1039/C2CS15359A. Search in Google Scholar

Larocca JP, Sharkawi MAY. Synthesis of some substituted amides of terephthalic and isophthalic acids. J Pharmaceutical Sci. 1967;56:916-8. DOI: 10.1002/jps.2600560732. Search in Google Scholar

Sellarajah S, Lekishvili T, Bowring C, Thompsett AR, Rudyk H, Birket ChR, et al. Synthesis of analogues of congo red and evaluation of their anti-prion activity. J Med Chem. 2004;47:5515-34. DOI:10.1021/jm049922t. Search in Google Scholar

Kurandina D, Huang B, Xu W, Hanikiel N, Daru A, Stroscio GD, et al. A porous crystalline nitrone-linked covalent organic framework. Communications. 2023;62:202307674. DOI: 10.1002/anie.202307674. Search in Google Scholar

Wang XL, Mu B, Lin HY, Yang S, Liu GCh. Two novel 3D copper(II) complex based on a rigid bis-pyridyl-bis-amide and two polycarboxylates mixed ligands: assembly, structures and properties. J Mol Structure. 2013;1036:380-5. DOI: 10.1016/j.molstruc.2012.12.001. Search in Google Scholar

Cheng H, Shang M, He Y, Shentu B, Gao Z. Synthesis and effect on N,N’-diphenylterephthalamide on crystallization of isotactic polypropylene. Polymer Sci. 2020;62:473-82. DOI: 10.1134/S1560090420050036. Search in Google Scholar

Kotowicz S, Korzec M, Siwy M, Golba S, Małecki JG, Janeczek H, et al. Novel 1,8-naphthalimides substituted at 3-C position: Synthesis and evaluation of thermal, electrochemical and luminescent properties. Dyes Pig. 2018;158:65-78. DOI: 10.1016/j.dyepig.2018.05.017. Search in Google Scholar

Bujak P, Kulszewicz-Bajer I, Zagorska M, Maurel V, Wielgus I, Proń A. Polymers for electronics and spintronics. Chem Soc Rev. 2013;42:8895-999. DOI: 10.1039/C3CS60257E. Search in Google Scholar

Pezz N, Janiska MCh, Imhof W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET and PS). Anal Bio Chem. 2018;411:823-33. DOI: 10.1007/s00216-018-1510-z. Search in Google Scholar

Dian HL, Meng FL, Yang ChX, Yan XP. Irreverible amide-linked covalent organic framework for selective and ultrafast gold recovery. Angew Chemie. 2020;59:17607-13. DOI: 10.1002/a.nie.202006535. Search in Google Scholar

Ackermann SM, Lachenmeier DW, Kuballa T, Schutz B, Spraul M, Bunzel M. NMR-based differentiation of conventionally from organically produced chicken eggs in Germany. Magn Reson Chem. 2019;57:579-88. DOI: 10.1002/mrc.3920143. Search in Google Scholar

Wilsens CHRM, Deshmukh YS, Noordover BAJ, Rastogi S. Influence of the 2,5-furandicarboxamide moiety on hydrogen bonding in aliphatic-aromatic poly(ester amide)s. Macromolecules. 2014;47:6196-206. DOI: 10.1021/ma501310f. Search in Google Scholar

Lima JC, Costa ARM, Sousa JC, Arruda SA, Almeida YMB. Thermal behavior of polyethylene terephthalate/organoclay nanocomposites: investigating copolymers as metrices. Polymer Composites. 2021;42:849-64. DOI: 10.1002/pc.25870. Search in Google Scholar

Cheng N, Yan Q, Liu S, Zhao D. Probing the intermolecular interactions of aromatic amides containing N-heterocycles and triptycene. CrystEngComm. 2014;16:4265-73. DOI: 10.1039/C4CE00089G. Search in Google Scholar

Kotowicz S, Korzec M, Pająk AK, Golba S, Małecki JG, Siwy M, et al. New acceptor-donor-acceptor systems based on bis-(imino-1,8-naphthalimide). Materials. 2021;14:2714-32. DOI: 10.3390/ma14112714. Search in Google Scholar

Espinoza EM, Clark JA, Derr JB, Bao D, Georgieva B, Quina FH, et al. How do amides affect the electronic properties of pyrene? ACS Omega. 2018;3:12857-67. DOI: 10.1021/acsomega.8b01581. Search in Google Scholar

Alonso-Navarro MJ, Harbuzaru A, Martinez-Fernandez M, Camero PP, Navarrere JTL, Ramos MM, et al. Synthesis and electronic properties of nitrogen-doped π-extended polycyclic aromatic dicarboximides with multiple redox processes. J Mater Chem C. 2021;9:7936-49. DOI: 10.1039/D1TC01239H. Search in Google Scholar

Amin MF, Gnida P, Kotowicz S, Małecki JG, Siwy M, Nitschke P, et al. Spectroscopic and physicochemical investigations of azomethines with triphenylamine core towards optoelectronics. Materials. 2022;15:7197-214. DOI: 10.3390/ma15207197. Search in Google Scholar

Kaim A, Piotrowski P, Zarębska K, Bogdanowicz KA, Przybył W, Kwak A, et al. Thermal imaging and deep optical and electrochemical study of C70 fullerene derivatives with thiophene, pyrrolidine or indene moieties along with electropolymerization with thiophene substituted imine: Blends with P3HT and PTB7. Electrochim Acta. 2022;426:140741. DOI: 10.1016/j.electacta.2022.140741. Search in Google Scholar

eISSN:
2084-4549
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Sustainable and Green Chemistry, Engineering, Electrical Engineering, Energy Engineering, Life Sciences, Ecology