INFORMAZIONI SU QUESTO ARTICOLO

Cita

Larez IM, Rojero E, Nubes G, Gil ME. Water quality of the Cuchujaqui River, a wetland of global significance. Biotecnia. 2014;16(3):22-8. DOI: 10.18633/bt.v16i3.108. Search in Google Scholar

National Water Commission. Water statistics in Mexico. 2018. Available from: http://sina.conagua.gob.mx/publicaciones/EAM_2018.pdf. Search in Google Scholar

Zhang J, Li H, Zhou Y, Dou L, Cai L. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ Pollut. 2018;235:710-9. DOI: 10.1016/j.envpol.2017.12.106. Search in Google Scholar

Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019;230(7). DOI: 10.1007/s11270-019-4221-y. Search in Google Scholar

Gillispie EC, Sowers TD, Duckworth OW, Polizzotto ML. Soil pollution due to irrigation with arsenic-contaminated groundwater: Current state of science. Current Pollut Reports. 2015;1(1):1-12. DOI: 10.1007/s40726-015-0001-5. Search in Google Scholar

Ministry of Agriculture and Rural Development. Concurrence program with the federal entities, a compendium of indicators. 2018. Available from: https://www.agricultura.gob.mx/sites/default/files/sagarpa/document/2020/03/19/1889/19032020-compendio-pcef-2018.pdf. Search in Google Scholar

World Wildlife Fund. Gonzalo Río Arronte Foundation. The San Pedro Mezquital Basin. 2010. Available from: https://awsassets.panda.org/downloads/fichatecnica_sanpedromezquital.pdf. Search in Google Scholar

Off J Federation. Agreement by which the result of the technical studies of surface waters in the Hydrological Basins Laguna de Santiaguillo, La Tapona, La Sauceda River, El Tunal River, Santiago Bayacora River, Durango River, Poanas River, Suchil River, Graseros River, Presidio San Pedro-Mezquital y San Pedro-Output River of the San Pedro Hydrological Region number 11. 2013. Available from: https://www.dof.gob.mx/nota_detalle.php?codigo=5311750&fecha=27/08/2013#gsc.tab=0. Search in Google Scholar

National Water Commission. Program of preventive measures and mitigation of the drought 2014 for the city of Durango. 2014. Available from: https://www.gob.mx/cms/uploads/attachment/file/99854/PMPMS_Victoria_de_Durango_Dgo.pdf. Search in Google Scholar

Vicencio-de la Rosa MG, Villanueva-Fierro I, Pérez-López ME. Water quality of the Mezquital River, Durango, Mexico. Chem Eng Int Symp 2007:22-29. Mexico. Available from: https://cruzfierro.com/eventos/2007/sessions/enve04m.pdf. Search in Google Scholar

Mexican Geological Service. Statistical Yearbook of Mexican Mining. 2020. Available from: https://www.sgm.gob.mx/productos/pdf/Anuario_2020_Edicion_2021.pdf. Search in Google Scholar

Official Mexican Standard NOM-021-SEMARNAT-2000. Specifications of fertility, salinity and soil classification. Available from: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf. Search in Google Scholar

American Public Health Association. Standard methods for the examination of water and wastewater. 23rd Edition, APHA, 2017. Washington DC, EUA. ISSN: 551979. Search in Google Scholar

Julca-Otiniano A, Meneses-Florián L, Blas-Sevillano R, Bello-Amez S. Organic matter, importance, experiences and its role in agriculture. IDESIA (Chile). 2006;24(1):49-61. DOI: 10.4067/S0718-34292006000100009. Search in Google Scholar

Mexican Standard NMX-AA-026-SCFI-2010. Water analyses, measurement of total Kjeldahl nitrogen in natural, residual and treated residual waters. Available from: https://www.gob.mx/cms/uploads/attachment/file/166772/NMX-AA-026-SCFI-2010.pdf. Search in Google Scholar

Institute of Hydrology, Meteorology and Environmental Studies. Soluble phosphorous in water by ascorbic acid method. Available from: http://www.ideam.gov.co/documents/14691/38155/Fósforo+Soluble+en+Agua+por+el+Método+del+Acido+Ascórbico..pdf/4894199d-b9f6-414b-bd00-1ebeca63b981. Search in Google Scholar

Mexican Standard NMX-AA-042-SCFI-2015. Water analyses, total coliform, faecal coliform and Escherichia coli enumeration, multi-tube most probable number method. Available from: https://www.gob.mx/cms/uploads/attachment/file/166147/nmx-aa-042-scfi-2015.pdf. Search in Google Scholar

Mexican Standard NMX-AA-051-SCFI-2016. Water analyses, measurement of metals by atomic absorption in natural, drinking, residual and treated residual waters. Available from: http://www.economianmx.gob.mx/normas/nmx/2010/nmx-aa-051-scfi-2016.pdf. Search in Google Scholar

Ecological Water Quality Criteria [CE-CCA-001]. Agreement for the ecological criteria of water quality. Secretary of Urban Development and Ecology. 1989. Available from: http://legismex.mty.itesm.mx/acu/acca001.pdf. Search in Google Scholar

Oficial Mexican Standard NOM-001-SEMARNAT-2021. Maximum permissible limits of pollutants in wastewater discharges in national waters and assets. Available from: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022#gsc.tab=0. Search in Google Scholar

Zhuang Q, Li G, Liu Z. Distribution, source, and pollution level of heavy metals in river sediments from South China. Catena. 2018;170:386-96. DOI: 10.1016/j.catena.2018.06.037. Search in Google Scholar

López-Pérez ME, Del Rincón-Castro MC, Muñoz-Torres C, Ruiz-Aguilar GML, Solís-Valdez S, Zanor GA. Evaluation of trace elements contamination in agricultural soils in the southwest of Guanajuato, Mexico. Acta Universitaria. 2018;27(6):10-21. DOI: 10.15174/au.2017.1386. Search in Google Scholar

Rubio H, Ortiz R, Quintana R, Saucedo R, Ochoa J, Rey NI. Water Quality Index (WQI) in the dam La Boquilla in Chihuahua, Mexico. Ecosistemas y Recursos Agropecuarios. 2014;1(2):139-50. DOI: 10.19136/era.a1n2.162. Search in Google Scholar

Pak HY, Chuah CJ, Tan ML, Yong EL, Snyder SA. A framework for assessing the adequacy of Water Quality Index-Quantifying parameter sensitivity and uncertainties in missing values distribution. Sci Total Environ. 2021;751:141982. DOI: 10.1016/j.scitotenv.2020.141982. Search in Google Scholar

Kachroud M, Trolard F, Kefi M, Jebari S, Bourrié G. Water quality indices: Challenges and application limits in the literature. Water. 2019;11(2):1-26. DOI: 10.3390/w11020361. Search in Google Scholar

Quiroz L, Izquierdo E, Menéndez C. Application of the water quality index in the Portoviejo River, Ecuador. Revista de Ingeniería Hidráulica y Ambiental. 2017;38(3):41-51. Available from: https://riha.cujae.edu.cu/index.php/riha/article/view/408. Search in Google Scholar

Varol M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ Pollut. 2020;266:115417. DOI: 10.1016/j.envpol.2020.115417. Search in Google Scholar

R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021. Available from: https://www.r-project.org/. Search in Google Scholar

Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu, F, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut. 2011;159(1):84-91. DOI: 10.1016/j.envpol.2010.09.019. Search in Google Scholar

Castro-González NP, Calderón-Sánchez F, Moreno-Rojas R, Tamariz-Flores JV, Reyes-Cervantes E. Heavy metals pollution level in wastewater and soils in the alto balsas sub-basin in Tlaxcala and Puebla, Mexico. Revista Internacional de Contaminación Ambiental. 2019;35(2):335-48. DOI: 10.20937/RICA.2019.35.02.06. Search in Google Scholar

Reyes CM, Rosales R, Rosales SB, Ríos JC, Ortiz IA, Santana S, et al. Observed degradation levels for chemical properties in soils used for agricultural production. Agrofaz - J Environ Agroecolog Sci. 2019;1(1):21-31. Available from: http://www.agrofaz.net/index.php/agrofaz/issue/view/3/Niveles%20observados%20para%20la%20degradaci%C3%B3n%20de%20las%20propiedades%20qu%C3%ADmicas%20en%20suelos%20usados%20para%20la%20producci%C3%B3n%20agr%C3%Adcola. Search in Google Scholar

Zhang Z, Wu X, Tu C, Huang X, Zhang J, Fang H, et al. Relationships between soil properties and the accumulation of heavy metals in different Brassica campestris L. growth stages in a Karst mountainous area. Ecotoxicol Environ Safety. 2020;206:1-11. DOI: 10.1016/j.ecoenv.2020.111150. Search in Google Scholar

Hu X, Wang J, Lv Y, Liu X, Zhong J, Cui X, et al. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter. Frontiers Microbiol. 2021;12:1-13. DOI: 10.3389/fmicb.2021.707786. Search in Google Scholar

Pikula D, Stepien W. Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a microplot experiment. Agronomy. 2021;11(878):1-11. DOI: 10.3390/agronomy11050878. Search in Google Scholar

Zaky MH, Abdel-Salam ME. Heavy metals content relating to soil physical properties. Egyptian J Appl Sci. 2020;35(5):50-62. DOI: 10.21608/EJAS.2020.113000. Search in Google Scholar

Rudnick RL, Gao S. Composition of the continental crust. Treatise Geochem. 2013;(3):1-64. DOI: 10.1016/B978-0-08-095975-7.00301-6. Search in Google Scholar

Official Mexican Standard NOM-147-SEMARNAT/SSA1-2004. Criteria to determine the remediation concentrations of soils contaminated by arsenic, barium, beryllium, cadmium, hexavalent chromium, mercury, nickel, silver, lead, selenium, thallium, and vanadium. Available from: https://www.dof.gob.mx/nota_detalle.php?codigo=4964569&fecha=02/03/2007#gsc.tab=0. Search in Google Scholar

European Union. Heavy metals and organic compounds from wastes used as organic fertilisers. 2004. Available from: https://ec.europa.eu/environment/pdf/waste/compost/hm_finalreport.pdf. Search in Google Scholar

Jabeen F, Chaudhry AS. Monitoring trace metals in different tissues of Cyprinus carpio from the Indus River in Pakistan. Environ Monitoring Assess. 2010;170:645-56. DOI: 10.1007/s10661-009-1263-4. Search in Google Scholar

Sosa-Rodríguez FS, Vazquez-Arenas J, Ponce P, Escobedo-Bretado MA, Castellanos-Juárez FX, Labastida I, et al. Spatial distribution, mobility and potential health risks of arsenic and lead concentrations in semiarid fine top-soils of Durango City, Mexico. Catena. 2020;190:1-13. DOI: 10.1016/j.catena.2020.104540. Search in Google Scholar

da Silva CA, Garcia CAB, de Santana HLP, de Pontes GC, Wasserman JC, da Costa SSL. Metal and metalloid concentrations in marine fish marketed in Salvador, BA, northeastern Brazil, and associated human health risks. Regional Stud Marine Sci. 2021;43:101716. DOI: 10.1016/j.rsma.2021.101716. Search in Google Scholar

Osuna-Martínez CC, Armienta MA, Bergés-Tiznado ME, Páez-Osuna F. Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Sci Total Environ. 2021;752:142062. DOI: 10.1016/j.scitotenv.2020.142062. Search in Google Scholar

Martínez-Cruz DA, Alarcón-Herrera MT, Reynoso-Cuevas L, Torres-Castañon LA. Space-time variation of arsenic and fluoride in groundwater in the city of Durango, Mexico. Tecnología y Ciencias del Agua. 2020;11(2):309-40. DOI: 10.24850/j-tyca-2020-02-09. Search in Google Scholar

Environmental Protection Agency. Water quality standards. 2003. Available from: https://www.epa.gov/sites/default/files/2014-12/documents/akwqs-chapter70.pdf. Search in Google Scholar

Guzmán A, Palacios O, Carrillo R, Chávez J, Nikolskii I. Surface water pollution at the Texcoco River Basin in Mexico. Agrociencia. 2007;41(4):385-93. Available from: https://agrociencia-colpos.org/index.php/agrociencia/article/view/547/547 Search in Google Scholar

Melo-González MG, Romero SM, Arjona M, Larumbe AG, Vaamonde G. Microbiological quality of Argentinian paprika. Revista Argentina Microbiologia. 2017;49(4):339-46. DOI: 10.1016/j.ram.2017.02.006. Search in Google Scholar

Navarro O, González J, Júnez-Ferreira HE, Bautista CF, Cardona A. Correlation of arsenic and fluoride in the groundwater for human consumption in a Semiarid Region of Mexico. Procedia Eng. 2017;186:333-40. DOI: 10.1016/j.proeng.2017.03.259. Search in Google Scholar

Dutt V, Sharma N. Potable water quality assessment of traditionally used springs in a hilly town of Bhaderwah, Jamu and Kashmir, India. Environ Monitoring Assess. 2022;194(30):1-20. DOI: 10.1007/s10661-021-09591-0. Search in Google Scholar

Arab S, Arab A. Effect of the physico-chemical parameters on the distribution of the faecal flora in a dam reservoir (Algeria). Revue d’Ecologie Terre et Vie. 2017;72(3):269-80. DOI: 10.3406/revec.2017.1890. Search in Google Scholar

Aram SA, Saalidong BM, Lartey PO. Comparative assessment of the relationship between coliform bacteria and water geochemistry in surface and ground water systems. PLoS ONE. 2021;16(9):1-17. DOI: 10.1371/journal.pone.0257715. Search in Google Scholar

Nyieku FE, Essandoh HMK, Armah FA, Awuah E. Modelling the interaction between physico-chemical and bacteriological characteristics of oilfields produced water from a waste management facility. Cleaner Waste Systems. 2022;3:1-7. DOI: 10.1016/j.clwas.2022.100054. Search in Google Scholar

Seo M, Lee H, Kim Y. Relationship between coliform bacteria and water quality factors at weir stations in the Nakdong River, South Korea. Water. 2019;11:1-16. DOI: 10.3390/w11061171. Search in Google Scholar

Sánchez-Martínez MG. Relationship between eutrophication levels and the presence of algae in El Tunal River and Durango River. Ph.D. Thesis. Durango, Mexico: National Polytechnic Institute; 2012. Available from: https://tesis.ipn.mx/handle/123456789/18226. Search in Google Scholar

Sedeño-Díaz JE, López-López E. Water quality in the Río Lerma, Mexico: An overview of the last quarter of the twentieth century. Water Resources Manage. 2007;21(10):1797-812. DOI: 10.1007/s11269-006-9128-x. Search in Google Scholar

Marín AE, Ramos JA, Martínez DA, Tuxpan J, De Lara J, Morán J. Identification of the hydrogeochemical processes and assessment of groundwater quality, using multivariate statistical approaches and water quality index in a wastewater irrigated region. Water. 2019;11(8):1702. DOI: 10.3390/w11081702. Search in Google Scholar

eISSN:
2084-4549
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Sustainable and Green Chemistry, Engineering, Electrical Engineering, Energy Engineering, Life Sciences, Ecology