Accesso libero

On the Influence of the Nugget Effect on the Efficiency of Magnetometric Soil Surface Screening

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Dankoub Z, Ayoubi S, Khademi H, Gao Lu SG. Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, Central Iran. Pedosphere. 2012;22(1):33-47. DOI: 10.1016/S1002-0160(11)60189-6.10.1016/S1002-0160(11)60189-6 Search in Google Scholar

[2] Zolfaghari Z, Ayoubi S, Mosaddeghi MR. Spatial variability of some soil shrinkage indices in hilly calcareous region of western Iran. Soil Tillage Res. 2015;150:180-91. DOI: 10.1016/j.still.2015.01.016.10.1016/j.still.2015.01.016 Search in Google Scholar

[3] Webster R, Oliver M. Geostatistics for Environmental Scientists. Chichiester: Wiley; 2007. ISBN: 9780470028582.10.1002/9780470517277 Search in Google Scholar

[4] Zawadzki J. Metody geostatystyczne dla kierunków przyrodniczych i technicznych (Geostatistical methods for natural and technical directions). Warszawa: Ofic Wyd Politechniki Warszawskiej; 2011. ISBN: 9788372079534. Search in Google Scholar

[5] Cressie N, Hawkins DM. Robust estimation of the variogram: I. J Int Assoc Mathematical Geol. 1980; 12:115-25. DOI: 10.1007/BF01035243.10.1007/BF01035243 Search in Google Scholar

[6] Zawadzki J, Fabijańczyk P. Use of variograms for field magnetometry analysis in Upper Silesia Industrial Region. Stud Geophys Geod. 2007;51:535-50. DOI: 10.1007/s11200-007-0031-6.10.1007/s11200-007-0031-6 Search in Google Scholar

[7] McBratney A, Odeh I, Bishop T, Dunbar M, Shatar T. An overview of pedometric techniques for use in soil survey. Geoderma. 2000; 97:293-327. DOI: 10.1016/S0016-7061(00)00043-4.10.1016/S0016-7061(00)00043-4 Search in Google Scholar

[8] Hengl T. A practical guide to geostatistical mapping of environmental variables, EUR 22904 EN. Scientific and Technical Research series: Office for Official Publications of the European Communities. 2007. ISBN: 9789279069048. Search in Google Scholar

[9] Woodcock CE, Strahler AH, Jupp DLB. The use of semivariograms in remote sensing: I. Scene models and simulated images. Remote Sensing of Environment. 1988;25:323-48. DOI: 10.1016/0034-4257(88)90108-3.10.1016/0034-4257(88)90108-3 Search in Google Scholar

[10] Woodcock CE, Strahler AH, Jupp DLB. The use of semivariograms in remote sensing: II. Real digital images. Remote Sensing of Environment. 1988;25:349-79. DOI: 10.1016/0034-4257(88)90109-5.10.1016/0034-4257(88)90109-5 Search in Google Scholar

[11] Goovaerts P. Ordinary cokriging revisited. Math Geol. 1998;30(1):22-42. DOI: 10.1023/A:1021757104135.10.1023/A:1021757104135 Search in Google Scholar

[12] McBratney AB, and Webster R. Choosing function for semivariograms of soil properties and fitting them to sampling estimates. J Soil Sci. 1986;37,617-39. DOI: 10.1111/j.1365-2389.1986.tb00392.x.10.1111/j.1365-2389.1986.tb00392.x Search in Google Scholar

[13] Scull P, Franklin J, Chadwick OA, McArthur D. Predictive soil mapping: a review. Progress Physical Geography. 2003;27:171-97. DOI: 10.1191/0309133303pp366ra.10.1191/0309133303pp366ra Search in Google Scholar

[14] Hengl T, Heuvelink G, Stein AAA. Generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 2004;122:75-93. DOI: 10.1016/j.geoderma.2003.08.018.10.1016/j.geoderma.2003.08.018 Search in Google Scholar

[15] Journel AG. Nonparametric estimation of spatial distributions. J Int Assoc Math Geol. 1983;15(3):445-68. DOI: 10.1007/bf01031292.10.1007/BF01031292 Search in Google Scholar

[16] Fabijańczyk P, Zawadzki J, Magiera T. Magnetometric assessment of soil contamination in problematic area using empirical Bayesian and indicator kriging: A case study in Upper Silesia, Poland. Geoderma. 2017;308:69-77. DOI: 10.1016/j.geoderma.2017.08.029.10.1016/j.geoderma.2017.08.029 Search in Google Scholar

[17] Isaaks EH. Srivastava RM. Appl Geostatistics. New York: Oxford University; 1998. ISBN: 9780196050134. Search in Google Scholar

[18] Oliver MA, Webster R, A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena. 2014;113:56-69. DOI: 10.1016/j.catena.2013.09.006.10.1016/j.catena.2013.09.006 Search in Google Scholar

[19] Fürst Ch, Lorz C, Makeschin F. Testing a soil magnetometry technique in a highly polluted industrial region in north-eastern Germany. Water Air Soil Pollut. 2009;202(1-4):33-43. DOI: 10.1007/s11270-008-9956-9.10.1007/s11270-008-9956-9 Search in Google Scholar

[20] Fürst C, Lorz C, Zirlewagen D. Testing the indicative value of magnetic susceptibility measurements for concluding on site potentials and risks provoked by fly ash deposition. Environ Manage. 2010;46:894-907. DOI: 10.1007/s00267-010-9572-5.10.1007/s00267-010-9572-520936281 Search in Google Scholar

[21] Fürst C, Zirlewage D, Lorz, C. Regionalization of magnetic susceptibility measurements based on a multiple regression approach. Water Air Soil Pollut. 2010;208(1-4):129-51. DOI: 10.1007/s11270-009-0154-1.10.1007/s11270-009-0154-1 Search in Google Scholar

[22] Magiera T, Strzyszcz Z, Kapička A, Petrovsky E. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma. 2006;130:299-311. DOI: 10.1016/j.geoderma.2005.02.002.10.1016/j.geoderma.2005.02.002 Search in Google Scholar

[23] Karimi R, Ayoubi S, Jalalian A, Sheikh-Hosseini AR, Afyuni M. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran. J Appl Geophysics. 2011;74(1):1-7. DOI: 10.1016/j.jappgeo.2011.02.009.10.1016/j.jappgeo.2011.02.009 Search in Google Scholar

[24] Ayoubi S, Jabbari M, Khademi H. Multiple linear modeling between soil properties, magnetic susceptibility and heavy metals in various land uses. Modeling Earth Systems Environ. 2018;4(2):579-89. DOI: 10.1007/s40808-018-0442-0.10.1007/s40808-018-0442-0 Search in Google Scholar

[25] Vodyanitskii YN, Shoba SA. Magnetic susceptibility as an indicator of heavy metal contamination of urban soils. Moscow Univ Soil Sci Bull. 2015;70(1):10-6. DOI: 10.3103/S014768741501007X.10.3103/S014768741501007X Search in Google Scholar

[26] Łukasik A, Magiera T, Lasota J, Błońska E. Background value of magnetic susceptibility in forest topsoil: Assessment on the basis of studies conducted in forest preserves of Poland. Geoderma. 2016;264:140-9. DOI: 10.1016/j.geoderma.2015.10.009.10.1016/j.geoderma.2015.10.009 Search in Google Scholar

[27] Łukasik A, Szuszkiewicz M, Magiera T. Impact of artifacts on topsoil magnetic susceptibility enhancement in urban parks of the Upper Silesian conurbation datasets. Soils Sediments. 2015;15:1836-46. DOI: 10.1007/s11368-014-0966-5.10.1007/s11368-014-0966-5 Search in Google Scholar

[28] Spiteri C, Kalinski V, Rosler W, Hoffman V, Appel E. Magnetic screening of pollution hotspots in the Lausitz Area, Eastern Germany: Correlation analysis between magnetic proxies and heavy metal concentration in soil. Environ Geol. 2005;49:1-9. DOI: 10.1007/s00254-005-1271-9.10.1007/s00254-005-1271-9 Search in Google Scholar

[29] Dearing JA. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. Bartington Instruments. UK. 1999. ISBN: 0952340909. Search in Google Scholar

[30] Zawadzki J, Magiera T, Fabijańczyk P. Geostatistical evaluation of magnetic indicators of forest soil contamination by heavy metals. Stud Geophys Geod. 2009;53:133-49. DOI: 10.1007/s11200-009-0008-8.10.1007/s11200-009-0008-8 Search in Google Scholar

[31] R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2020. Available from: https://www.R-project.org/. Search in Google Scholar

[32] Pebesma EJ. Multivariable geostatistics in S: the gstat package. Computers Geosci. 2004;30:683-91. DOI: 10.1016/j.cageo.2004.03.012.10.1016/j.cageo.2004.03.012 Search in Google Scholar

[33] Zawadzki J, Fabijańczyk P, Magiera T, Rachwał M. Micro-scale spatial correlation of magnetic susceptibility in soil profile in forest located in an industrial area. Geoderma. 2015;249:61-8. DOI: 10.1016/j.geoderma.2015.02.008.10.1016/j.geoderma.2015.02.008 Search in Google Scholar

[34] Liu XM, Xu JM, Zhang MK, Huang JH, Shi JC, Yu XF. Application of geostatistics and GIS technique to characterize spatial variabilities of bioavailable micronutrient in paddy soils. Environ Geol. 2004;46:189-94. DOI: 10.1007/s00254-004-1025-0.10.1007/s00254-004-1025-0 Search in Google Scholar

[35] Badawy W, Frontasyeva MV, Ibrahim M. Vertical distribution of major and trace elements in a soil profile from the Nile Delta, Egypt. Ecol. Chem Eng S. 2020;27(2):281-94. DOI: 10.2478/eces-2020-0018.10.2478/eces-2020-0018 Search in Google Scholar

[36] Usowicz B, Lipiec J Spatial variability of saturated hydraulic conductivity and its links with other soil properties at the regional scale. Sci Rep. 2021;11:8293. DOI: 10.1038/s41598-021-86862-3.10.1038/s41598-021-86862-3805026733859221 Search in Google Scholar

[37] Western AW, Blöschl G, Grayson RB. How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrolog Processes. 1998;12(12):1851-68. DOI: 10.1002/(SICI)1099-1085(19981015).10.1002/(SICI)1099-1085(19981015)12:12<1851::AID-HYP670>3.0.CO;2-P Search in Google Scholar

eISSN:
2084-4549
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Sustainable and Green Chemistry, Engineering, Electrical Engineering, Energy Engineering, Life Sciences, Ecology