INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J Trace Element Med Biol. 2016;35:107-15. DOI: 10.1016/j.jtemb.2016.02.006.10.1016/j.jtemb.2016.02.00627049134 Search in Google Scholar

[2] Sarban S, Isikan UE, Kocabey Y, Kocyigit A. Relationship between synovial fluid and plasma manganese, arginase, and nitric oxide in patients with rheumatoid arthritis. Biol Trace Element Res. 2007;115(2):97-106. DOI: 10.1007/BF02686022.10.1007/BF0268602217435254 Search in Google Scholar

[3] Romero A, Ramos E, de Los Ríos C, Egea JJ, del Pino J, Reiter RJ. A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res. 2014;56(4):343-70. DOI: 10.1111/jpi.12132.10.1111/jpi.1213224628077 Search in Google Scholar

[4] Gu Q, Feng T, Cao H, Tang Y, Ge X, Luo J. HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation. Radiation Oncol. 2013;8(1):253. DOI: 10.1186/1748-717X-8-253.10.1186/1748-717X-8-253383964024175971 Search in Google Scholar

[5] Raffi S, Mehrwan T, Bhatti M, Akhter J-I, Hameed A, Yawar W. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annal Microb. 2010;60(1):75-80. DOI: 10.1007/s13213-010-0015-6.10.1007/s13213-010-0015-6 Search in Google Scholar

[6] Huff JD, Keung YK, Thakuri M, Beaty MW, Hurd DD, Owen J. Copper deficiency causes reversible myelodysplasia. Am J Hem. 2007;82(7):625-30. DOI: 10.1002/ajh.20864.10.1002/ajh.2086417236184 Search in Google Scholar

[7] Ozturk P, Kurutas E, Ataseven A, Dokur N, Gumusalan Y, Gorur A, et al. BMI and levels of zinc, copper in hair, serum and urine of Turkish male patients with androgenetic alopecia. J Trace Element Med Biol. 2014;28(3):266-70. DOI: 10.1016/j.jtemb.2014.03.003.10.1016/j.jtemb.2014.03.00324746780 Search in Google Scholar

[8] Antonucci L, Porcu C, Iannucci G, Balsano C, Barbaro B. Non-alcoholic fatty liver disease and nutritional implications: Special focus on copper. Nutrients. 2017;9(10):1137. DOI: 10.3390/nu9101137.10.3390/nu9101137569175329057834 Search in Google Scholar

[9] Cilliers KCJ, Muller F, Page BJ. Trace element concentration changes in brain tumors: A review. Anat Rec (Hoboken). 2020;303(5):1293-9. DOI: 10.1002/ar.24254.10.1002/ar.2425431509337 Search in Google Scholar

[10] Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coordinat Chem Rev. 2017;353:1-57. DOI: 10.1016/j.ccr.2017.10.004.10.1016/j.ccr.2017.10.004 Search in Google Scholar

[11] Ismail Khan M, Khan MI, Khan SB, Khan AM, Akhtar K, Asiri AM. Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J Mol Liq. 2018;260:78-91. DOI: 10.1016/j.molliq.2018.03.058.10.1016/j.molliq.2018.03.058 Search in Google Scholar

[12] Fardood ST, Ramazani A, Moradi S. Green synthesis of Ni-Cu-Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. J Sol-Gel Sci Technol. 2017;82:432-9. DOI: 10.1007/s10971-017-4310-6.10.1007/s10971-017-4310-6 Search in Google Scholar

[13] Chen L, Noory Fajer A, Yessimbekov Z, Kazemi M, Mohammadi M. Diaryl sulfides synthesis: copper catalysts in C-S bond formation. J Sulfur Chem. 2019;40(4):451-68. DOI: 10.1080/17415993.2019.1596268.10.1080/17415993.2019.1596268 Search in Google Scholar

[14] Gupta AK, De D, Katoch R, Garg A, Bharadwaj PK, Synthesis of a NbO type homochiral Cu(II) metal-organic framework: Ferroelectric behavior and heterogeneous catalysis of three-component coupling and Pechmann reactions. Inorg Chem. 2017;56(8):4697-705. DOI: 10.1021/acs.inorgchem.7b00342.10.1021/acs.inorgchem.7b0034228362106 Search in Google Scholar

[15] An B, Zhang J, Cheng K, Ji P, Wang C, Lin W. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc. 2017;139:3834-40. DOI: 10.1021/jacs.7b00058.10.1021/jacs.7b0005828209054 Search in Google Scholar

[16] Dong X, Ren B, Sun Z, Li C, Zhang X, Kong M, Zheng S, Dionysiou DD. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl Catal B. Environ. 2019;253:206-17. DOI: 10.1016/j.apcatb.2019.04.052.10.1016/j.apcatb.2019.04.052 Search in Google Scholar

[17] Pachamuthu MP, Karthikeyan S, Maheswari R, Lee AF, Ramanathan A. Fenton-like degradation of bisphenol A catalyzed by mesoporous Cu/TUD-1. Appl Surface Sci. 2017;393:67-73. DOI: 10.1016/j.apsusc.2016.09.162.10.1016/j.apsusc.2016.09.162 Search in Google Scholar

[18] Liang Y, Chen Z, Yao W, Wang P, Yu S, Wang X. Decorating of Ag and CuO on Cu nanoparticles for enhanced high catalytic activity to the degradation of organic pollutants. Langmuir. 2017;33:7606-14. DOI: 10.1021/acs.langmuir.7b01540.10.1021/acs.langmuir.7b0154028723097 Search in Google Scholar

[19] Thangadurai D, David M, Dabire SS, Sangeetha J, Prakash L. Nanotechnology and the Sustainability: Toxicological Assessments and Environmental Risks of Nanomaterials Under Climate Change. In: Kharissova OV, Martínez LMT, Kharisov BI, editors. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Cham: Springer International Publishing; 2020. pp. 1-22. DOI: 10.1007/978-3-030-11155-7_91-1.10.1007/978-3-030-11155-7_91-1 Search in Google Scholar

[20] Nasrollahzadeh M, Issaabadi Z, Sajadi SM. Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Separat Purificat Technol. 2018;197:253-60. DOI: 10.1016/j.seppur.2018.01.010.10.1016/j.seppur.2018.01.010 Search in Google Scholar

[21] Ahmadi S, Rabiee N, Fatahi Y, Hooshmand SE, Bagherzadeh M, Rabiee M, et al. Green chemistry and coronavirus. Sustain Chem Pharm. 2021;21:100415. DOI: 10.1016/j.scp.2021.100415.10.1016/j.scp.2021.100415792759533686371 Search in Google Scholar

[22] Safajoo N, Mirjalili BBF, Bamoniri A. A facile and clean synthesis of indenopyrido [2, 3-d] pyrimidines in the presence of Fe3O4@ NCs/Cu (II) as bio-based magnetic nano-catalyst. Polycycl Aromat Compd. 2021;41:1241-8. DOI: 10.1080/10406638.2019.1666889.10.1080/10406638.2019.1666889 Search in Google Scholar

[23] Dalvi BA, Lokhande PD. Copper (II) catalyzed aromatization of tetrahydrocarbazole: An unprecedented protocol and its utility towards the synthesis of carbazole alkaloids. Tetrahedron Lett. 2018;59:2145-2149. DOI: 10.1016/j.tetlet.2018.01.061.10.1016/j.tetlet.2018.01.061 Search in Google Scholar

[24] Kang W, Pei X, Rusinek CA, Bange A, Haynes EN, Heineman WR, Papautsky I. Determination of lead with a copper-based electrochemical sensor. Anal Chem. 2017;89:3345-52. DOI: 10.1021/acs.analchem.6b03894.10.1021/acs.analchem.6b03894542898328256823 Search in Google Scholar

[25] Wei H, Pan D, Hu X, Liu M, Han H, Shen D. Voltammetric determination of copper in seawater at a glassy carbon disk electrode modified with Au@MnO2 core-shell microspheres. Microchimica Acta. 2018;185:258. DOI: 10.1007/s00604-018-2799-1.10.1007/s00604-018-2799-129680894 Search in Google Scholar

[26] Li M, Huang X, Yu H. A colorimetric assay for ultrasensitive detection of copper(II) ions based on pH-dependent formation of heavily doped molybdenum oxide nanosheets. Mater Sci Engin C. 2019;101:614-18. DOI: 10.1016/j.msec.2019.04.022.10.1016/j.msec.2019.04.02231029354 Search in Google Scholar

[27] Singh VK, Kushwaha CS, Shukla SK. Potentiometric detection of copper ion using chitin grafted polyaniline electrode. Int J Biol Macromol. 2020;147:250-257. DOI: 10.1016/j.ijbiomac.2019.12.209.10.1016/j.ijbiomac.2019.12.20931887388 Search in Google Scholar

[28] Muhammad N, Zhang Y, Subhani Q, Intisar A, Mingli Y, Cui H, et al. Comparative steam distillation based digestion of complex inorganic copper concentrates samples followed by ion chromatographic determination of halogens. Microchem J. 2020;158:105176. DOI: 10.1016/j.microc.2020.105176.10.1016/j.microc.2020.105176 Search in Google Scholar

[29] Wu L-L, Zhang Y, Zhao W, Li QM. Indirect determination of sodium cefotaxime with N-propyl alcohol-ammonium sulfate-water system by extraction-flotation of cuprous thiocyanate. J Chinese Chem Soc. 2008;55:550-6. DOI: 10.1002/jccs.200800081.10.1002/jccs.200800081 Search in Google Scholar

[30] Tanaka Y-k, Ogra Y. Evaluation of copper metabolism in neonatal rats by speciation analysis using liquid chromatography hyphenated to ICP mass spectrometry. Metallomics. 2019;11:1679-1686. DOI: 10.1039/c9mt00158a.10.1039/c9mt00158a31417989 Search in Google Scholar

[31] Gao Q, Ji L, Wang Q, Yin K, Li J, Chen L. Colorimetric sensor for highly sensitive and selective detection of copper ion. Anal Methods. 2017;9:5094-100. DOI: 10.1039/C7AY01335C.10.1039/C7AY01335C Search in Google Scholar

[32] He L, Z. Bao Z, Zhang K, Yang D, Sheng B, Huang R, et al. Ratiometric determination of copper(II) using dually emitting Mn (II)-doped ZnS quantum dots as a fluorescent probe. Microchim Acta. 2018;185:511. DOI: 10.1007/s00604-018-3043-8.10.1007/s00604-018-3043-830343449 Search in Google Scholar

[33] Vojoudi H, Bastan B, Ghasemi JB, Badiei A. An ultrasensitive fluorescence sensor for determination of trace levels of copper in blood samples. Anal Bioanal Chem. 2019;411:5593-603. DOI: 10.1007/s00216-019-01940-w.10.1007/s00216-019-01940-w31289896 Search in Google Scholar

[34] Fu Y, Fan C, Liu G, Pu S. A colorimetric and fluorescent sensor for Cu2+ and F based on a diarylethene with a 1,8-naphthalimide Schiff base unit. Sensor Actuat B. Chem. 2017;239:295-303. DOI: 10.1016/j.snb.2016.08.020.10.1016/j.snb.2016.08.020 Search in Google Scholar

[35] Jiao Y, Zhou L, He H, Yin J, Gao Q, Wei J, Duan C, Peng X. A novel rhodamine B-based off-on fluorescent sensor for selective recognition of copper (II) ions. Talanta. 2018;184:143-8. DOI: 10.1016/j.talanta.2018.01.073.10.1016/j.talanta.2018.01.07329674025 Search in Google Scholar

[36] Chen J, Chen H, Wang T, Li J, Wang J, Lu X. Copper ion fluorescent probe based on Zr-MOFs composite material. Anal Chem. 2019; 91:4331-6. DOI: 10.1021/acs.analchem.8b03924.10.1021/acs.analchem.8b0392430854846 Search in Google Scholar

[37] Ottoni O, Cruz R, Alves R. Efficient and simple methods for the introduction of the sulfonyl, acyl and alkyl protecting groups on the nitrogen of indole and its derivatives. Tetrahedron. 1998;54:13915-28. DOI: 10.1016/S0040-4020(98)00865-5.10.1016/S0040-4020(98)00865-5 Search in Google Scholar

[38] Wan Y, Li Y, Yan C, Yan M, Tang Z. Indole: A privileged scaffold for the design of anti-cancer agents. Europ J Med Chem. 2019;183:111691. DOI: 10.1016/j.ejmech.2019.111691.10.1016/j.ejmech.2019.11169131536895 Search in Google Scholar

[39] Birmann PT, Sousa FS, de Oliveira DH, Domingues M, Vieira BM, Lenardão EJ, et al. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole, a new selenium compound elicits an antinociceptive and anti-inflammatory effect in mice. Europ J Pharm. 2018;827:71-9. DOI: 10.1016/j.ejphar.2018.03.005.10.1016/j.ejphar.2018.03.00529535001 Search in Google Scholar

[40] Ciulla MG, Kumar K. The natural and synthetic indole weaponry against bacteria. Tetrahedron Lett. 2018;593:3223-33. DOI: 10.1016/j.tetlet.2018.07.045.10.1016/j.tetlet.2018.07.045 Search in Google Scholar

[41] Kaur J, Utreja D, Jain N, Sharma S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr Org Synth. 2019;16:17-37. DOI: 10.2174/1570179415666181113144939.10.2174/157017941566618111314493931965921 Search in Google Scholar

[42] El-Mekabaty A, Mesbah A, Fadda AA. An efficient and facile synthesis of functionalized indole-3-yl pyrazole derivatives starting from 3-cyanoacetylindole. J Het Chem. 2017;54:916-22. DOI: 10.1002/jhet.2654.10.1002/jhet.2654 Search in Google Scholar

[43] Kumari A, Singh RK. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg Chem. 2017;89:103021. DOI: 10.1016/j.bioorg.2019.103021.10.1016/j.bioorg.2019.10302131176854 Search in Google Scholar

[44] Zheng K, Hong R. Stereoconfining macrocyclizations in the total synthesis of natural products. Nat Prod Rep. 2019;36:1546-75. DOI: 10.1039/C8NP00094H.10.1039/C8NP00094H Search in Google Scholar

[45] Graebin GCS, Ribeiro FV, Rogério KR, Kümmerle AE. Multicomponent reactions for the synthesis of bioactive compounds: a review. Curr Org Synth. 2019;16:855-99. DOI: 10.2174/1570179416666190718153703.10.2174/157017941666619071815370331984910 Search in Google Scholar

[46] Ibarra IA, Islas-Jácome A, González-Zamora E. Synthesis of polyheterocycles via multicomponent reactions. Org Biomol Chem. 2018;16: 1402-18. DOI: 10.1039/C7OB02305G.10.1039/C7OB02305G Search in Google Scholar

[47] Tan X, Liang Y, Ye Y, Liu Z, Meng J, Li F. Explainable Deep Learning-Assisted Fluorescence Discrimination for Aminoglycoside Antibiotic Identification. Anal Chem. 2022;94:829-36. DOI: 10.1021/acs.analchem.1c03508.10.1021/acs.analchem.1c0350834978809 Search in Google Scholar

[48] Kakuchi R. The dawn of polymer chemistry based on multicomponent reactions. Polymer J. 2019;51:945-53. DOI: 10.1038/s41428-019-0209-0.10.1038/s41428-019-0209-0 Search in Google Scholar

[49] Zhang Z, You Y, Hong C. Multicomponent reactions and multicomponent cascade reactions for the synthesis of sequence-controlled polymers. Macromol Rapid Commun. 2018;39:1800362. DOI: 10.1002/marc.201800362.10.1002/marc.20180036230066410 Search in Google Scholar

[50] Kheilkordi Z, Mohammadi Ziarani G, Mohajer F, Badiei A, Varma RS. Waste-to-wealth transition: Application of natural waste materials as sustainable catalysts in multicomponent reactions. Green Chem. 2022;24:4304-27. DOI: 10.1039/D2GC00704E.10.1039/D2GC00704E Search in Google Scholar

[51] Kaur G, Kumar R, Saroch S, Gupta VK, Banerjee B. Mandelic acid: an efficient organo-catalyst for the synthesis of 3-substituted-3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr Organocatal. 2021;8:147-59. DOI: 10.2174/2213337207999200713145440.10.2174/2213337207999200713145440 Search in Google Scholar

[52] Jamasbi N, Mohammadi Ziarani G, Mohajer F, Badiei A. A new Hg2+ colorimetric chemosensor: the synthesis of chromeno [d] pyrimidine-2, 5-dione/thione derivatives using Fe3O4@ SiO2@(BuSO3H)3. Res Chem Intermed. 2022;48:899-909. DOI: 10.1007/s11164-021-04611-7.10.1007/s11164-021-04611-7 Search in Google Scholar

[53] Mohammadi Ziarani G, Khademi M, Mohajer F, Anafcheh M, Badiei A, Ghasemi JB. Solvent-free one-pot synthesis of 4-aryl-3, 5-dimethyl-1, 4, 7, 8-tetrahydrodipyrazolo [3, 4-b: 4′, 3′-e] pyridines using Fe3O4@ SiO2@(BuSO3H)3 catalytic Fe3+ system as selective colorimetric. Res Chem Intermed. 2022;48:2111-33. DOI: 10.1007/s11164-022-04682-0.10.1007/s11164-022-04682-0 Search in Google Scholar

[54] Mohammadi Ziarani G, Ebrahimi Z, Mohajer F, Badiei A. Synthesis and application of SBA-Pr-Py@Pd in Suzuki-type cross-coupling reaction. Res Chem Intermed. 2021;47:4583-94. DOI: 10.1007/s11164-021-04544-1.10.1007/s11164-021-04544-1 Search in Google Scholar

[55] Mohajer F, Mohammadi Ziarani G, Badiei A. The synthesis of SBA-Pr-3AP@Pd and its application as a highly dynamic, eco-friendly heterogeneous catalyst for Suzuki-Miyaura cross-coupling reaction. Res Chem Intermed. 2020;46:4909-22. DOI: 10.1007/s11164-020-04218-4.10.1007/s11164-020-04218-4 Search in Google Scholar

[56] Chen M-N, Mo L-P, Cui Z-S, Zhang Z-H. Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem. 2019;15:27-37. DOI: 10.1016/j.cogsc.2018.08.009.10.1016/j.cogsc.2018.08.009 Search in Google Scholar

[57] Verma C, Haque J, Quraishi M, Ebenso EE. Aqueous phase environmental friendly organic corrosion inhibitors derived from one step multicomponent reactions: a review. J Mol Liq. 2019;275:18-40. DOI: 10.1016/j.molliq.2018.11.040.10.1016/j.molliq.2018.11.040 Search in Google Scholar

[58] Leonardi M, VillacampaM, Menéndez JC. Multicomponent mechanochemical synthesis. Chem Sci. 2018;9:2042-64. DOI: 10.1039/C7SC05370C.10.1039/C7SC05370C590967329732114 Search in Google Scholar

[59] Neochoritis CG, Zhao T, Dömling A. Tetrazoles via multicomponent reactions. Chem Rev. 2019;119:1970-2042. DOI: 10.1021/acs.chemrev.8b00564.10.1021/acs.chemrev.8b00564637645130707567 Search in Google Scholar

[60] Chatel G. How sonochemistry contributes to green chemistry? Ultrason Sonochem. 2018;40:117-22. DOI: 10.1016/j.ultsonch.2017.03.029.10.1016/j.ultsonch.2017.03.02928341331 Search in Google Scholar

[61] Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science. 2020;367:397-400. DOI: 10.1126/science.aay3060.10.1126/science.aay306031974246 Search in Google Scholar

[62] Sheldon RA. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain Chem Engin. 2018;6:32-48. DOI: 10.1021/acssuschemeng.7b03505.10.1021/acssuschemeng.7b03505 Search in Google Scholar

[63] Shirmohammadli Y, Efhamisisi D, Pizzi A. Tannins as a sustainable raw material for green chemistry: A review. Indust Crop Product. 2018;126:316-32. DOI: 10.1016/j.indcrop.2018.10.034.10.1016/j.indcrop.2018.10.034 Search in Google Scholar

[64] Antenucci A, Dughera S, Renzi P. Green chemistry meets asymmetric organocatalysis: a critical overview on catalysts synthesis. Chem Sust Chem. 2021;14:2785-853. DOI: 10.1002/cssc.202100573.10.1002/cssc.202100573836221933984187 Search in Google Scholar

[65] Molnar M, Lončarić M, Kovač M. Green chemistry approaches to the synthesis of coumarin derivatives. Curr Org Chem. 2020;24:4-43. DOI: 10.2174/1385272824666200120144305.10.2174/1385272824666200120144305 Search in Google Scholar

[66] Feng GL. An efficient synthesis of 2,2-bis(1H-indol-3-yl)-2H-acenaphthen-1-one catalyzed by recyclable solid superacid SO42−/TiO2 under grinding condition. Chinese Chem Lett. 2010;21(9):1057-61. DOI: 10.1016/j.cclet.2010.05.009.10.1016/j.cclet.2010.05.009 Search in Google Scholar

[67] Yu J, Shen T, Lin Y, Zhou Y, Song Q. Rapid and efficient synthesis of 3,3-Di(1H-indol-3-yl)indolin-2-ones and 2,2-Di(1H-indol-3-yl)-2H-acenaphthen-1-ones Catalyzed by p-TSA. Synth Commun. 2014;44:2029-36. DOI: 10.1080/00397911.2014.886330.10.1080/00397911.2014.886330 Search in Google Scholar

[68] Mohammadi Ziarani G, Hajiabbasi P, Badiei A. Application of SBA-Pr-NH2 as a nanoporous base silica catalyst in the development of 2,2-Bis(1H-indol-3-yl)acenaphthen-1(2H)-ones syntheses. J Iran Chem Soc. 2015;12:1649-54. DOI: 10.1007/s13738-015-0639-3.10.1007/s13738-015-0639-3 Search in Google Scholar

[69] Feng G-L. Facile synthesis of 2,2-BIS(1H-indol-3-yl)acenaphthen-1(2H)-one derivatives catalysed by ceric ammonium nitrate. J Chem Res. 2015;34(4):203-5. DOI: 10.3184/030823410X12701382235942.10.3184/030823410X12701382235942 Search in Google Scholar

[70] Fernandez LS, Buchanan MS, Carroll AR, Feng YJ, Quinn RJ, Avery VM. Flinderoles a−c: Antimalarial bis-indole alkaloids from flindersia species. Org Lett. 2009;11:329-332. DOI: 10.1021/ol802506n.10.1021/ol802506n19090698 Search in Google Scholar

[71] Zhou G, He L, Li KH, Pedroso CC, Gochin M. A targeted covalent small molecule inhibitor of HIV-1 fusion. Chem Commun. 2021;57:4528-31. DOI: 10.1039/D1CC01013A.10.1039/D1CC01013A Search in Google Scholar

[72] Rohini R, Reddy PM, Shanker K, Hu A, Ravinder V. Antimicrobial study of newly synthesized 6-substituted indolo [1, 2-c] quinazolines. Europ J Med Chem. 2010;45:1200-5. DOI: 10.1016/j.ejmech.2009.11.038.10.1016/j.ejmech.2009.11.03820005020 Search in Google Scholar

[73] Zhang F, Zhao K, Tang T, Deng Y, Zhang Y, Feng S, et al. Bisindole compound 4ae ameliorated cognitive impairment in rats with vascular dementia by anti-inflammation effect via microglia cells. Europ J Pharm. 2021;908:174357. DOI: 10.1016/j.ejphar.2021.174357.10.1016/j.ejphar.2021.17435734284012 Search in Google Scholar

[74] Khan NA, Kaur N, Owens P, Thomas OP, Boyd A. Bis-indole alkaloids isolated from the sponge Spongosorites calcicola disrupt cell membranes of MRSA. Int J Mol Sci. 2022:23:1991. DOI: 10.3390/ijms23041991.10.3390/ijms23041991887444235216106 Search in Google Scholar

[75] Jin T-Y, Li P-L, Wang C-L, Tang XL, Cheng M-M, Zong Y, et al. Racemic bisindole alkaloids: structure, bioactivity, and computational study. Chinese J Chem. 2021;39:2588-98. DOI: 10.1002/cjoc.202100255.10.1002/cjoc.202100255 Search in Google Scholar

[76] Deb B, Debnath S, Chakraborty A, Majumdar S. Bis-indolylation of aldehydes and ketones using silica-supported FeCl3: molecular docking studies of bisindoles by targeting SARS-CoV-2 main protease binding sites. RSC Adv. 2021;11:30827-39. DOI: 10.1039/D1RA05679D.10.1039/D1RA05679D Search in Google Scholar

[77] Bhattacharjee P, Chatterjee S, Achari A, Saha A, Nandi D, Acharya C, et al. A bis-indole/carbazole based C5-curcuminoid fluorescent probe with large Stokes shift for selective detection of biothiols and application to live cell imaging. Analyst. 2020;145:1184-9. DOI: 10.1039/C9AN02190F.10.1039/C9AN02190F31859293 Search in Google Scholar

[78] Wang Z-G, Wang Y, Ding X-J, Sun Y-X, Liu H-B, Xie CZ, et al. A highly selective colorimetric and fluorescent probe for quantitative detection of Cu2+/Co2+: The unique ON-OFF-ON fluorimetric detection strategy and applications in living cells/zebrafish. Spectrochim Acta A. Mol Biomol Spect. 2020;228:117763. DOI: 10.1016/j.saa.2019.117763.10.1016/j.saa.2019.11776331718979 Search in Google Scholar

[79] Bhosale TR, Chandam DR, Anbhul PVe, Deshmukh MB. Synthesis of novel 4-((substituted bis-indolyl)methyl)-benzo-15-crown-5 for the colorimetric detection of Hg2+ ions in an aqueous medium. J Het Chem. 2019;56:477-84. DOI: 10.1002/jhet.3422.10.1002/jhet.3422 Search in Google Scholar

[80] Kheilkordi Z, Mohammadi Ziarani G, Badeie A. Fe3O4@SiO2@(BuSO3H)3 synthesis as a new efficient nanocatalyst and its application in the synthesis of heterocyclic [3.3.3] propellane derivatives. Polyhedron. 2020;178:114343. DOI: 10.1016/j.poly.2019.114343.10.1016/j.poly.2019.114343 Search in Google Scholar

[81] Renny JS, Tomasevich LL, Tallmadge EH, Collum DB. Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. Angew Chem Int Edit. 2013;52:11998-12013. DOI: 10.1002/anie.201304157.10.1002/anie.201304157402869424166797 Search in Google Scholar

[82] Joshi B-P, Park J, Lee W-I, Lee K-H. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. Talanta. 2009;78:903-9. DOI: 10.1016/j.talanta.2008.12.062.10.1016/j.talanta.2008.12.06219269448 Search in Google Scholar

eISSN:
2084-4549
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Sustainable and Green Chemistry, Engineering, Electrical Engineering, Energy Engineering, Life Sciences, Ecology