INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Naranjo SE. Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Reviews: Perspective in Agriculture, Veterinary Science, Nutrition and Natural Resources. 2009;11:1-23. DOI: 10.1079/PAVSNNR20094011. Open DOISearch in Google Scholar

[2] Hilbeck A, Meier M, Römbke J, Jänsch J, Teichmann H, Tappeser B. Environmental risk assessment of genetically modified plants - concepts and controversies. Environ Sci Eur. 2011;23:1-13. DOI: 10.1186/2190-4715-23-13. Open DOISearch in Google Scholar

[3] Devos Y, Sanctis G, Neri FM, Messéan A. EFSA is working to advance the environmental risk assessment of genetically modified crops to better protect butterflies and moths. EFSA J. 2021;19:e0190301. DOI: 10.2903/j.efsa.2021.e190301.804029433868493 Open DOISearch in Google Scholar

[4] Twardowski J, Bereś P, Hurej M, Klukowski Z. The quantitative changes of ground beetles (Col., Carabidae) in BT and conventional maize crop in southern Poland. J Plant Prot Res. 2012;52:404-9. DOI: 10.2478/v10045-012-0066-8. Open DOISearch in Google Scholar

[5] Bereś PK. Harmfulness of Ostrinia nubilalis Hbn. on some not-Bt versus genetically modified Bt maize (Zea mays L.) cultivars in Poland in 2006-2007. J Plant Prot Res. 2010;50:110-6. DOI: 10.2478/v10045-010-0019-z. Open DOISearch in Google Scholar

[6] Brookes G. Twenty-one years of using insect resistant (GM) maize in Spain and Portugal: farm-level economic and environmental contributions. GM Crops Food. 2019;10:90-101. DOI: 10.1080/21645698.2019.1614393.661553431072184 Open DOISearch in Google Scholar

[7] ISAAA. Global Status of Commercialized Biotech/GM Crops in 2017: Biotech Crop Adoption Surges as Economic Benefits Accumulate in 22 Years. ISAAA Brief No. 53. New York: ISAAA: Ithaca; 2017. ISBN: 9781892456672. Search in Google Scholar

[8] Skoková Habuštová O, Doležal P, Spitzer L, Svobodová Z, Hussein H Sehnal F. Impact of Cry1Ab toxin expression on the non-target insects dwelling on maize plants. J Appl Entomol. 2015;138:164-72. DOI: 10.1111/jen.12004. Open DOISearch in Google Scholar

[9] Twardowski J, Bereś P, Hurej M, Klukowski Z, Warzecha R. Effects of maize expressing the insecticidal protein cry1ab on non-target ground beetles assemblages. Rom Agric Res. 2017;34:351-61. Available from: https://www.incda-fundulea.ro/rar/nr34/rar34.39.pdf. Search in Google Scholar

[10] Čerevková, A, Miklisová S, Szoboszlay M, Tebbe CC, Cagáň, Ľ. The responses of soil nematode communities to Bt maize cultivation at four field sites across Europe. Soil Biol Biochem. 2018;119:194-202. DOI: 10.1016/j.soilbio.2018.01.023. Open DOISearch in Google Scholar

[11] Birken EM, Cloyd RA. Food preference of the rove beetle, Atheta coriaria Kraatz (Coleoptera: Staphylinidae) under laboratory conditions. Insect Sci. 2007;14:53-6. DOI: 10.1111/j.1744-7917.2007.00125.x. Open DOISearch in Google Scholar

[12] Szujecki A. Kusakowate - Staphylinidae. Podrodzina: Skorogonki - Tachyporinae. Klucze do oznaczania owadów Polski, Chrząszcze - Coleoptera, XIX. [Row beetles - Staphylinidae. Subfamily: - Tachyporinae. Keys for recognizing insects of Poland, Beetles - Coleoptera, XIX] Wrocław. Poland: Polskie Towarzystwo Entomologiczne; 2013. ISBN: 9788361764403; 8361764402. Search in Google Scholar

[13] Szujecki A. Kusakowate - Staphylinidae. Wstęp oraz podrodziny: Micropeplinae, Piestinae, Osoriinae, Pseudopsiinae, Phloeocharinae, Olisthaerinae, Proteininae, Omaliinae, Oxytelinae, Oxyporinae. Klucze do oznaczania owadów Polski, Chrząszcze - Coleoptera, XIX. [Introduction and subfamilies: Micropeplinae, Piestinae, Osoriinae, Pseudopsiinae, Phloeocharinae, Olisthaerinae, Proteininae, Omaliinae, Oxytelinae, Oxyporinae. Keys for recognizing insects of Poland, Beetles - Coleoptera,]. Toruń. Poland: Polskie Towarzystwo Entomologiczne; 2008. ISBN: 9788361607205; 836160720X. Search in Google Scholar

[14] Icoz I, Stotzky G. Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem. 2008;40:559-86. DOI: 10.1016/j.soilbio.2007.11.00215. Open DOISearch in Google Scholar

[15] Baumgarte S, Tebbe CC. Effects of transgenic corn and Cry1Ab protein on the nematode, Caenorhabditis elegans. Molecular Ecol. 2005;14(8):2539-51. DOI: 10.1111/j.1365-294X.2005.02592.x.15969733 Open DOISearch in Google Scholar

[16] Skoková Habuštová O, Svobodová Z, Spitzer L, Spitzer P, Doležal HM, Hussein HM, Sehnal F. Communities of ground-dwelling arthropods in conventional and transgenic maize: background data for the post-market environmental monitoring. J Appl Entomol. 2015;139:31-45. DOI: 10.1111/jen.12161. Open DOISearch in Google Scholar

[17] Priesnitz KU, Benker UI, Schaarschmidt FJ. Assessment of the potential impact of a Bt maize hybrid expressing Cry3Bb1 on ground beetles (Carabidae). J Plant Dis Protect. 2013;120:131-40. DOI: 10.1007/BF03356464. Open DOISearch in Google Scholar

[18] Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS. Bt crop effects on functional guilds of non-target arthropods: A meta-analysis. PLoS ONE. 2008;3(5):e2118. DOI: 10.1371/journal.pone.0002118.234655018461164 Open DOISearch in Google Scholar

[19] Resende DCh, Mendes SM, Marucci RC, de Carvahlo SA, Campanha MM, Waquil JM. Rev. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem? Bras Entomol. 2016;60:82-93. DOI: 10.1016/j.rbe.2015.12.001. Open DOISearch in Google Scholar

[20] Pálinkás Z, Zalai M, Szénási M, Kádár F, Dorner Z, Balog A. Rove beetles (Coleoptera Staphylinidae) -Their abundance and competition with other predatory groups in Bt maize expressing Cry34Ab1, Cry35Ab1, Cry1F and CP4 EPSPS proteins. Crop Prot. 2016;80:87-93. DOI: 10.1016/j.cropro.2015.11.001. Open DOISearch in Google Scholar

[21] Pálinkás Z, Kiss J, Zalai M, Szénási A, Dorner Z, North S, Woodward G, Balog A. Effects of genetically modified maize events expressing Cry34Ab1, Cry35Ab1, Cry1F, and CP4 EPSPS proteins on arthropod complex food webs. Ecol Evol. 2017;7:2286-93. DOI: 10.1002/ece3.2848.538348528405292 Open DOISearch in Google Scholar

[22] Balog A, Kiss J, Szekeres D, Szénási Á, Marko V. Rove beetle (Coleoptera: Staphylinidae) communities in transgenic Bt (MON810) and near isogenic maize. Crop Prot. 2010;29:567-71. DOI: 10.1016/j.cropro.2009.12.020. Open DOISearch in Google Scholar

[23] Balog A, Szénási Á, Szekeres D, Pálinkás Z. Analysis of soil dwelling rove beetles (Coleoptera: Staphylinidae) in cultivated maize fields containing the Bt toxins, Cry34/35Ab1 and Cry1F×Cry34/35Ab1. Biocontrol Sci Techn. 2011;21:293-7. DOI: 10.1080/09583157.2010.545104. Open DOISearch in Google Scholar

[24] Farinós GP, la Poza M, Hernández-Crespo P, Castañera FOP. Diversity and seasonal phenology of aboveground arthropods in conventional and transgenic maize crops in Central Spain. Biol Control. 2008;44: 361-71. DOI: 10.1016/j.biocontrol.2007.11.007. Open DOISearch in Google Scholar

[25] Svobodová Z, Skoková Habuštová O, Bohac J, Sehnal F. Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize. Bull Entomol Res. 2016;106:432-45. DOI: 10.1017/S000748531500111X.26781035 Open DOISearch in Google Scholar

[26] García M, Ortego F, Castañera P, Farinós GP. Assessment of prey-mediated effects of the coleopteran-specific toxin Cry3Bb1 on the generalist predator Atheta coriaria (Coleoptera: Staphylinidae). Bull Entomol Res. 2012;102:293-302. DOI: 10.1017/S0007485311000666.22112629 Open DOISearch in Google Scholar

[27] García M, Ortego F, Castañera P, Farinós GP. Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria. Biol Control. 2010;55:225-33. DOI: 10.1016/j.biocontrol.2010.08.002. Open DOISearch in Google Scholar

[28] Guo M, Wang Z, Cai W, Hua H, Zhao J. Safety assessment of transgenic Cry2Aa rice to a generalist predator, Paederus fuscipes Curtis (Coleoptera: Staphylinidae). Ecotoxicol Environ Safety. 2020;200:110719. DOI: 10.1016/j.ecoenv.2020.110719.32460046 Open DOISearch in Google Scholar

[29] Amin MR, Oh SD, Suh SJ. Comparing the effects of GM and non-GM soybean varieties on non-target arthropods. Entomol Res. 2020;50:423-32. DOI: 10.1111/1748-5967.12461. Open DOISearch in Google Scholar

eISSN:
2084-4549
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Sustainable and Green Chemistry, Engineering, Electrical Engineering, Energy Engineering, Life Sciences, Ecology