INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Zhang Q, Jiang X, Tong D, Davis SJ, Zhao H, Geng G, et al. Transboundary health impacts of transported global air pollution and international trade. Nature. 2017;543:705. DOI: 10.1038/nature21712. Open DOISearch in Google Scholar

[2] Zivin JG, Neidell M. Air pollution’s hidden impacts. Science. 2018;359:39-40. DOI: 10.1126/science.aap7711. Open DOISearch in Google Scholar

[3] WHO. Burden of disease from household air pollution for 2012. World Health Organization. 2014;1211. Available from: https://www.ccacoalition.org/en/resources/world-health-organization-%E2%80%93-burden-disease-joint-effects-household-and-ambient-air. Search in Google Scholar

[4] Chan CK, Yao X. Air pollution in mega cities in China. Atmos Environ. 2008;42:1-42. DOI: 10.1016/j.atmosenv.2007.09.003. Open DOISearch in Google Scholar

[5] Song C, Wu L, Xie Y, He J, Chen X, Wang T, et al. Air pollution in China: Status and spatiotemporal variations. Environ Pollut. 2017;227:334-47. DOI: 10.1016/j.envpol.2017.04.075. Open DOISearch in Google Scholar

[6] Liu M, Huang Y, Ma Z, Jin Z, Liu X, Wang H, et al. Spatial and temporal trends in the mortality burden of air pollution in China: 2004-2012. Environ Int. 2017;98:75-81. DOI: 10.1016/j.envint.2016.10.003. Open DOISearch in Google Scholar

[7] Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1659-724. DOI: 10.1016/S0140-6736(16)31679-8. Open DOISearch in Google Scholar

[8] Zhang Y, Wei J, Tang A, Zheng A, Shao Z, Liu X. Chemical characteristics of PM2.5 during 2015 Spring Festival in Beijing, China. Aerosol Air Quality Res. 2017;17:1169-80. DOI: 10.4209/aaqr.2016.08.0338. Open DOISearch in Google Scholar

[9] Lin H, Guo Y, Zheng Y, Di Q, Liu T, Xiao J, et al. Long-term effects of ambient PM2.5 on hypertension and blood pressure and attributable risk among older Chinese adults. Hypertension. 2017;69:806-12. DOI: 10.1161/HYPERTENSIONAHA.116.08839.544712928348017 Open DOISearch in Google Scholar

[10] Song L, Liu X, Skiba U, Zhu B, Zhang X, Liu M, et al. Ambient concentrations and deposition rates of selected reactive nitrogen species and their contribution to PM2.5 aerosols at three locations with contrasting land use in southwest China. Environ Pollut. 2018;233:1164-76. DOI: 10.1016/j.envpol.2017.10.002.29037493 Open DOISearch in Google Scholar

[11] Aunan K, Ma Q, Lund M T, Wang S. Population-weighted exposure to PM2. 5 pollution in China: An integrated approach. Environ Int. 2018;120:111-20. DOI: 10.1016/j.envint.2018.07.042.30077943 Open DOISearch in Google Scholar

[12] Wang S, Zhou C, Wang Z, Feng K, Hubacek K. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J Cleaner Production. 2017;142:1800-09. DOI: 10.1016/j.jclepro.2016.11.104. Open DOISearch in Google Scholar

[13] Guan W-J, Zheng X-Y, Chung KF, Zhong N-S. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet. 2016;388:1939-51. DOI: 10.1016/S0140-6736(16)31597-5. Open DOISearch in Google Scholar

[14] Xie Y, Dai H, Dong H, Hanaoka T, Masui T. Economic impacts from PM2.5 pollution-related health effects in China: a provincial-level analysis. Environ Sci Technol. 2016;50:4836-43. DOI: 10.1021/acs.est.5b05576. Open DOISearch in Google Scholar

[15] Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, et al. Rapid health transition in China, 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet. 2013;381:1987-2015. DOI: 10.1016/S0140-6736(13)61097-1. Open DOISearch in Google Scholar

[16] Rosielle A, Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci. 1981;21:943-6. DOI: 10.2135/cropsci1981.0011183X002100060033x. Open DOISearch in Google Scholar

[17] Nix H, Fitzpatrick E. An index of crop water stress related to wheat and grain sorghum yields. Agricultural Meteorology. 1969;6:321-37. DOI: 10.1016/0002-1571(69)90024-7. Open DOISearch in Google Scholar

[18] Mackill DJ, Ismail AM, Pamplona AM, Sanchez DL, Carandang JJ, Septiningsih EM. Stress tolerant rice varieties for adaptation to a changing climate. Crop Environ Bioinformatics. 2010;7:250-9. DOI: 10.30061/CEB.201012.0004. Open DOISearch in Google Scholar

[19] Farooq M, Hussain M, Wakeel A, Siddique KH. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy Sustainable Development. 2015;35:461-81. DOI: 10.1007/s13593-015-0287-0. Open DOISearch in Google Scholar

[20] Zeng W, Xu C, Wu J, Huang J, Zhao Q, Wu M. Impacts of salinity and nitrogen on the photosynthetic rate and growth of sunflowers (Helianthus annuus L.). Pedosphere. 2014;24:635-44. DOI: 10.1016/S1002-0160(14)60049-7. Open DOISearch in Google Scholar

[21] Zhao R-F, Chen X-P, Zhang F-S, Zhang H, Schroder J, Römheld V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy J. 2006;98:938-45. DOI: 10.2134/agronj2005.0157. Open DOISearch in Google Scholar

[22] Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science. 2006;312:1918-21. DOI: 10.1126/science.1114722. Open DOISearch in Google Scholar

[23] Fuhrer J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agricult Ecosystems Environ. 2003;97:1-20. DOI: 10.1016/S0167-8809(03)00125-7. Open DOISearch in Google Scholar

[24] Tubiello FN, Donatelli M, Rosenzweig C, Stockle CO. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. European J Agronomy. 2000;13:179-89. DOI: 10.1016/S1161-0301(00)00073-3. Open DOISearch in Google Scholar

[25] Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc National Academy Sci. 2009;106:15594-8. DOI: 10.1073/pnas.0906865106. Open DOISearch in Google Scholar

[26] Avnery S, Mauzerall DL, Liu J, Horowitz LW. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmospheric Environ. 2011;45:2297-309. DOI: 10.1016/j.atmosenv.2011.01.002. Open DOISearch in Google Scholar

[27] Lin Y, Jiang F, Zhao J, Zhu G, He X, Ma X, et al. Impacts of O3 on premature mortality and crop yield loss across China. Atmospheric Environ. 2018;194:41-7. DOI: 10.1016/j.atmosenv.2018.09.024. Open DOISearch in Google Scholar

[28] Zhao H, Zheng Y, Wu X. Assessment of yield and economic losses for wheat and rice due to ground-level O3 exposure in the Yangtze River Delta, China. Atmospheric Environ. 2018;191:241-8. DOI: 10.1016/j.atmosenv.2018.08.019. Open DOISearch in Google Scholar

[29] Zhang J, Tian H, Yang J, Pan S. Improving representation of crop growth and yield in the dynamic land ecosystem model and its application to China. J Advances Modeling Earth Systems. 2018;10:1680-707. DOI: 10.1029/2017MS001253. Open DOISearch in Google Scholar

[30] Feng Z, Uddling J, Tang H, Zhu J, Kobayashi K. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments. Global Change Biology. 2018;24:2231-8. DOI: 10.1111/gcb.14077. Open DOISearch in Google Scholar

[31] Streets D, Waldhoff S. Present and future emissions of air pollutants in China: SO2, NOx, and CO. Atmospheric Environ. 2000;34:363-74. DOI: 10.1016/S1352-2310(99)00167-3. Open DOISearch in Google Scholar

[32] Schiferl LD, Heald CL, Kelly D. Resource and physiological constraints on global crop production enhancements from atmospheric particulate matter and nitrogen deposition. Biogeosciences. 2018;15:4301-15. DOI: 10.5194/bg-15-4301-2018. Open DOISearch in Google Scholar

[33] Kong WW, Zhang LP, Guo K, Liu ZP, Yang ZM. Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant Biotechnol J. 2010;8:88-99. DOI: 10.1111/j.1467-7652.2009.00469.x.20055961 Open DOISearch in Google Scholar

[34] Spierings FHFG. Influence of fumigations with NO2 on growth and yield of tomato plants. Netherlands J Plant Pathology. 1971;77:194-200. DOI: 10.1007/bf01977278. Open DOISearch in Google Scholar

[35] Ooi L, Matsuura T, Munemasa S, Murata Y, Katsuhara M, Hirayama T, et al. The mechanism of SO2-induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells. Plant, Cell Environ. 2019;42:437-47. DOI: 10.1111/pce.13406.30014483 Open DOISearch in Google Scholar

[36] Richards BL, Taylor OC. Status and redirection of research on the atmospheric pollutants toxic to field grown crops in Southern California. Air Repair. 1961;11:125-8. DOI: 10.1080/00022470.1961.10467980.13741255 Open DOISearch in Google Scholar

[37] Silveira GL, Lima MG, Reis GB, Palmieri MJ, Andrade-Vieria LF. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere. 2017;178:359. DOI: 10.1016/j.chemosphere.2017.03.048.28340458 Open DOISearch in Google Scholar

[38] Uka U, Hogarh J, Belford E. Morpho-anatomical and biochemical responses of plants to air pollution. Int J Modern Botany. 2017;7:1-11. DOI: 10.5923/j.ijmb.20170701.01. Open DOISearch in Google Scholar

[39] McLaughlin S, Mcconathy R, Duvick D, Mann L. Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white pine trees. Forest Sci. 1982;28:60-70. DOI: 10.1093/forestscience/28.1.60. Open DOISearch in Google Scholar

[40] Grote R, Samson R, Alonso R, Amorim JH, Cariñanos P, Churkina G, et al. Functional traits of urban trees: air pollution mitigation potential. Frontiers Ecology Environ. 2016;14:543-50. DOI: 10.1002/fee.1426. Open DOISearch in Google Scholar

[41] Patidar S, Bafna A, Batham A, Panwar K. Impact of urban air pollution on photosynthetic pigment and proline content of plants growing along the AB road Indore City, India. Int J Current Microbiol Appl Sci. 2016;5:107-13. DOI: 10.20546/ijcmas.2016.503.015. Open DOISearch in Google Scholar

[42] Van Der Eerden LJ, Tonneijck AE, Wijnands JH. Crop loss due to air pollution in the Netherlands. Environ Pollut. 1988;53:365-76. DOI: 10.1016/0269-7491(88)90046-2. Open DOISearch in Google Scholar

[43] Tai AP, Martin MV, Heald CL. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change. 2014;4:817. DOI: 10.1038/nclimate2317. Open DOISearch in Google Scholar

[44] Emberson L. Critical air quality effects: A focus on assessing crop growth, productivity and socio-economic implications of food supply. Air Quality Climate Change. 2017;51:50. DOI: 10.3316/informit.414557735559154. Open DOISearch in Google Scholar

[45] Liao T, Gui K, Jiang W, Wang S, Wang B, Zeng Z, et al. Air stagnation and its impact on air quality during winter in Sichuan and Chongqing, Southwestern China. Sci Total Environ. 2018;635:576. DOI: 10.1016/j.scitotenv.2018.04.122.29679830 Open DOISearch in Google Scholar

[46] Bai Z, Han J, Azzi M. Insights into measurements of ambient air PM2.5 in China. Trends Environ Analytical Chem. 2017;13:1-9. DOI: 10.1016/j.teac.2017.01.001. Open DOISearch in Google Scholar

[47] Wang YQ, Wang SY, Lai KK. A new fuzzy support vector machine to evaluate credit risk. IEEE Transact Fuzzy Systems. 2005;13:820-31. DOI: 10.1109/TFUZZ.2005.859320. Open DOISearch in Google Scholar

[48] Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: misc functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R package version 1.6-7 [M]. 2015. Available from: https://rdrr.io/rforge/e1071. Search in Google Scholar

[49] Benkedjouh T, Medjaher K, Zerhouni N, Rechak S. Health assessment and life prediction of cutting tools based on support vector regression. J Intelligent Manufacturing. 2015;26:1-11. DOI: 10.1007/s10845-013-0774-6. Open DOISearch in Google Scholar

[50] Zhang Z, Ding S, Sun Y. A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task. Neurocomputing. 2020;410:185-201. DOI: 10.1016/j.neucom.2020.05.075. Open DOISearch in Google Scholar

[51] Smola AJ, Schölkopf B. A tutorial on support vector regression. Statistics Computing. 2004;14:199-222. DOI: 10.1023/B:STCO.0000035301.49549.88. Open DOISearch in Google Scholar

[52] Miao W, Huang X, Song Y. An economic assessment of the health effects and crop yield losses caused by air pollution in mainland China. J Environ Sci. 2017;56:102-13. DOI: 10.1016/j.jes.2016.08.024.28571844 Open DOISearch in Google Scholar

[53] Wahid A, Maggs R, Shamsi SR, Bell JN, Ashmore MR. Effects of air pollution on rice yield in the Pakistan Punjab. Environ Pollut. 1995;90:323-9. DOI: 10.1016/0269-7491(95)00024-L. Open DOISearch in Google Scholar

[54] Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB. Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut. 2003;126:323-9. DOI: 10.1016/S0269-7491(03)00245-8. Open DOISearch in Google Scholar

[55] Burney J, Ramanathan V. Recent climate and air pollution impacts on Indian agriculture. Proc National Acad Sci. 2014: 201317275. DOI: 10.1073/pnas.1317275111. Open DOISearch in Google Scholar

[56] Zeng W, Xu C, Zhao G, Wu J, Huang J. Estimation of sunflower seed yield using partial least squares regression and artificial neural network models. Pedosphere. 2018;28:764-74. DOI: 10.1016/S1002-0160(17)60336-9. Open DOISearch in Google Scholar

[57] Zhu J, Zeng W, Ma T, Lei G, Zha Y, Fang Y, et al. Testing and improving the WOFOST Model for Sunflower Simulation on Saline Soils of Inner Mongolia, China. Agronomy. 2018;8:172. DOI: 10.3390/agronomy8090172. Open DOISearch in Google Scholar

[58] Zeng W, Lei G, Zha Y, Fang Y, Wu J, Huang J. Sensitivity and uncertainty analysis of the HYDRUS-1D model for root water uptake in saline soils. Crop Pasture Sci. 2018;69:163-73. DOI: 10.1071/CP17020. Open DOISearch in Google Scholar

[59] Ma T, Zeng W, Li Q, Yang X, Wu J, Huang J. Shoot and root biomass allocation of sunflower varying with soil salinity and nitrogen applications. Agronomy J. 2017;109:2545-55. DOI: 10.2134/agronj2017.04.0194. Open DOISearch in Google Scholar

[60] Zeng W, Wu J, Hoffmann MP, Xu C, Ma T, Huang J. Testing the APSIM sunflower model on saline soils of Inner Mongolia, China. Field Crops Res. 2016;192:42-54. DOI: 10.1016/j.fcr.2016.04.013. Open DOISearch in Google Scholar

[61] Helms TC, Deckard E, Goos RJ, Enz JW. Soybean seedling emergence influenced by days of soil water stress and soil temperature. Agronomy J. 1996;88:657-61. DOI: 10.2134/agronj1996.00021962008800040026x. Open DOISearch in Google Scholar

[62] Campos H, Trejo C, Peña-Valdivia CB, García-Nava R, Conde-Martínez FV, Cruz-Ortega MR. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environ Experimental Botany. 2014;98:56-64. DOI: 10.1016/j.envexpbot.2013.10.015. Open DOISearch in Google Scholar

[63] Cai W, Li K, Liao H, Wang H, Wu L. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nature Climate Change. 2017;7:257. DOI: 10.1038/nclimate3249. Open DOISearch in Google Scholar

[64] Fan J, Wu L, Zhang F, Cai H, Wang X, Lu X, et al. Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature. Renew Sust Energy Rev. 2018;94:732-47. DOI: 10.1016/j.rser.2018.06.029. Open DOISearch in Google Scholar

[65] Wang Y, Yang Y, Zhao N, Liu C, Wang Q. The magnitude of the effect of air pollution on sunshine hours in China. J Geophysical Res: Atmospheres. 2012;117. DOI: 10.1029/2011JD016753. Open DOISearch in Google Scholar

[66] Yang X, Zhao C, Zhou L, Wang Y, Liu X. Distinct impact of different types of aerosols on surface solar radiation in China. J Geophys Res: Atmospheres. 2016;121:6459-71. DOI: 10.1002/2016JD024938. Open DOISearch in Google Scholar

[67] Khodakarami J, Ghobadi P. Urban pollution and solar radiation impacts. Renew Sust Energy Rev. 2016;57:965-76. DOI: 10.1016/j.rser.2015.12.166. Open DOISearch in Google Scholar

[68] Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricult Water Manage. 2006;81:1-22. DOI: 10.1016/j.agwat.2005.03.007. Open DOISearch in Google Scholar

[69] Amundson RG, Maclean DC. Influence of oxides of nitrogen on crop growth and yield: An overview. Studies Environ Sci. 1982;21:501-10. DOI: 10.1016/B978-0-444-42127-2.50050-6. Open DOISearch in Google Scholar

[70] Wang D, Liu Z, Dian Y, Zhou Z, Fang S. Potential of detecting the sulfur dioxide stress on landscape plants in spectral reflectance data. J Indian Soc Remote Sensing. 2018;46:561-8. DOI: 10.1007/s12524-017-0717-3. Open DOISearch in Google Scholar

[71] Choi D, Toda H, Kim Y. Effect of sulfur dioxide (SO2) on growth and physiological activity in Alnus sieboldiana at Miyakejima Island in Japan. Ecol Res. 2014;29:103-10. DOI: 10.1007/s11284-013-1103-4. Open DOISearch in Google Scholar

[72] Telesnicki MC, Martínez-Ghersa MA, Ghersa CM. Plant oxidative status under ozone pollution as predictor for aphid population growth: The case of Metopolophium dirhodum (Hemiptera: Aphididae) in Triticum aestivum (Poales: Poaceae). Biochem Systematics Ecology. 2018;77:51-6. DOI: 10.1016/j.bse.2018.02.004. Open DOISearch in Google Scholar

[73] Wang Y, Yi H, Han Y. Sulfur dioxide alleviates cadmium toxicity in the roots of foxtail millet seedlings. J Agro-Environ Sci. 2017;36:443-8. DOI: 10.11654/jaes.2016-1338. Open DOISearch in Google Scholar

[74] Fan J, Wu L, Zhang F, Cai H, Zeng W, Wang X, et al. Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China. Renew Sust Energy Rev. 2019;100:186-212. DOI: 10.1016/j.rser.2018.10.018. Open DOISearch in Google Scholar

[75] Chaudhuri S, Chowdhury AR. Air quality index assessment prelude to mitigate environmental hazards. Natural Hazards. 2018;91:1-17. DOI: 10.1007/s11069-017-3080-3. Open DOISearch in Google Scholar

[76] Giovanis E, Ozdamar O. Health status, mental health and air quality: evidence from pensioners in Europe. Environ Sci Pollut Res. 2018;25:1-20. DOI: 10.1007/s11356-018-1534-0.597884629525857 Open DOISearch in Google Scholar

[77] Świsłowski P, Kříž J, Rajfur M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng S. 2020;27(2):195-210. DOI: 10.2478/eces-2020-0013. Open DOISearch in Google Scholar

[78] Ilic P, Popovic Z, Neskovic Markic D. Assessment of meteorological effects and ozone variation in Urban area. Ecol Chem Eng S. 2020;27(3):373-85. DOI: 10.2478/eces-2020-0024. Open DOISearch in Google Scholar

[79] Filak M, Hoffman S. Study of trends in concentrations of basic air pollutants in the Malopolska Province. Ecol Chem Eng S. 2020;27(4):567-78. DOI: 10.2478/eces-2020-0035. Open DOISearch in Google Scholar

[80] Shen F, Ge X, Hu J, Nie D, Tian L, Chen M. Air pollution characteristics and health risks in Henan Province, China. Environ Res. 2017;156:625. DOI: 10.1016/j.envres.2017.04.026.28454015 Open DOISearch in Google Scholar

[81] Ghasemitehrani H, Fallah S, Mozafarian N, Miranzadeh S, Sadeghi S, Azidhak A. Effect of exposure to air pollution on placental weight in Isfahan-Iran. J Family Reprod Health. 2017;11:90-6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742669/. Search in Google Scholar

[82] Plaia A, Salvo FD, Ruggieri M, Agró G. A multisite-multipollutant air quality index. Atmospheric Environ. 2013;70:387-91. DOI: 10.1016/j.atmosenv.2013.01.028. Open DOISearch in Google Scholar

[83] Kroto HW, Zielińska M, Rajfur M, Wacławek M. The climate change crisis? Chem Didact Ecol Metrol. 2016; 21(1-2):11-27. DOI: 10.1515/cdem-2016-0001. Open DOISearch in Google Scholar

[84] Crutzen PJ, Wacławek S. Atmospheric chemistry and climate in the anthropocene. Chem Didact Ecol Metrol. 2014;19(1-2):9-28. DOI: 10.1515/cdem-2014-0001. Open DOISearch in Google Scholar

eISSN:
2084-4549
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Sustainable and Green Chemistry, Engineering, Electrical Engineering, Energy Engineering, Life Sciences, Ecology