1. bookVolume 17 (2021): Edizione 1 (June 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2255-9159
Prima pubblicazione
31 Jan 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
access type Accesso libero

A New Quasi Open Loop Synchronization Technique for Grid-Connected Applications

Pubblicato online: 13 Sep 2021
Volume & Edizione: Volume 17 (2021) - Edizione 1 (June 2021)
Pagine: 47 - 58
Dettagli della rivista
License
Formato
Rivista
eISSN
2255-9159
Prima pubblicazione
31 Jan 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Abstract

This paper presents an effective quasi open-loop (QOLS) synchronization technique for grid -connected power converters that is organized in two different blocks. The first block is a new flexible technique for extracting the positive and negative sequence voltage under unbalanced and distorted conditions. It is a decoupled double self-tuning filter (DD-STF) or multiple self-tuning filters (M-STF) according to the conditions. The main advantages of this technique are its simple structure and the fact of being able to work under highly distorted conditions. Each harmonic is separately treated and this allows for selective compensation in active filter applications. The second block is the frequency detector; we propose a neural approach based on an ADALINE for online adaptation of the cut-off frequency of the DD-STF and M-STF considering a possible variation in the main frequency. The main advantage of this method is its immunity to the voltage signal amplitude and phase. In order to improve the performance of the frequency estimation under distorted source voltage, a pre-filtering stage is introduced. Experimental tests validate the proposed method and illustrate all its interesting features. Results show high performance and robustness of the method under low voltage ride through.

Keywords

[1] B. K. Bose, “Global energy scenario and impact of power electronics in the 21st century”, IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2638–2651, Jul. 2013. https://doi.org/10.1109/TIE.2012.220377110.1109/TIE.2012.2203771 Search in Google Scholar

[2] H. Wang, M. Liserre, and F. Blaabjerg, “Toward reliable power electronics: Challenges, design tools, and opportunities”, IEEE Ind. Electron Mag., vol. 7, no. 2, pp. 17–26, Jun. 2013. https://doi.org/10.1109/MIE.2013.225295810.1109/MIE.2013.2252958 Search in Google Scholar

[3] M. Liserre, T. Sauter, and J. Y. Hung, “Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics”, IEEE Ind. Electron. Mag., vol. 4, no. 1, pp. 18–37, Mar. 2010. https://doi.org/10.1109/MIE.2010.93586110.1109/MIE.2010.935861 Search in Google Scholar

[4] F. Blaabjerg, Y. Yang, D. Yang, and X. Wang, “Distributed power generation systems and protection”, Proc. IEEE, vol. 105, no. 7, pp. 1311–1331, 2017. https://doi.org/10.1109/JPROC.2017.269687810.1109/JPROC.2017.2696878 Search in Google Scholar

[5] F. Blaabjerg. Control of Power Electronic Converters and Systems, vol. 2. Academic Press, 2018. Search in Google Scholar

[6] D. Dong, B. Wen, D. Boroyevich, P. Mattavelli, and Y. Xue, “Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions”, IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 310–321, Jan. 2015. https://doi.org/10.1109/TIE.2014.233466510.1109/TIE.2014.2334665 Search in Google Scholar

[7] A. Malkhandi and T. Ghose, “A Fourier-based single phase PLL algorithm: Design, analysis, and implementation in FPGA controller”, International Transactions on Electrical Energy Systems, vol. 27, no. 10, p. e2410, 2017. https://doi.org/10.1002/etep.241010.1002/etep.2410 Search in Google Scholar

[8] S. R. Arya, M. M. Patel, S. J. Alam, J. Srikakolapu, and A. K. Giri, “Phase lock loop–based algorithms for DSTATCOM to mitigate load created power quality problems”, International Transactions on Electrical Energy Systems, vol. 30, no. 1, p. e12161, 2020. https://doi.org/10.1002/2050-7038.1216110.1002/2050-7038.12161 Search in Google Scholar

[9] L. Hadjidemetriou, E. Kyriakides, and F. Blaabjerg, “A robust synchronization to enhance the power quality of renewable energy systems”, IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4858–4868, 2015. https://doi.org/10.1109/TIE.2015.239787110.1109/TIE.2015.2397871 Search in Google Scholar

[10] S. Golestan, A. Vidal, A. G. Yepes, J. M. Guerrero, J. C. Vasquez, and J. Doval-Gandoy, “A true open-loop synchronization technique”, IEEE Trans. Ind. Inform., vol. 12, no 3, pp. 1093–1103, 2016. https://doi.org/10.1109/TII.2016.255001710.1109/TII.2016.2550017 Search in Google Scholar

[11] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Three-phase PLLs: A review of recent advances”, IEEE Trans. Power Electron., vol. 32, no 3, pp. 1894–1907, 2017. https://doi.org/10.1109/TPEL.2016.256564210.1109/TPEL.2016.2565642 Search in Google Scholar

[12] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “An open-loop grid synchronization approach for single-phase applications”, IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5548–5555, Jul. 2018. https://doi.org/10.1109/TPEL.2017.278262210.1109/TPEL.2017.2782622 Search in Google Scholar

[13] S. Golestan, J. M. Guerrero, J. C. Vasquez, A. M. Abusorrah, and Y. Al-Turki, “A Study on Three-phase FLLs”, IEEE Trans. Power Electron., vol. 34, no 1, pp. 213–224, 2019. https://doi.org/10.1109/TPEL.2018.282606810.1109/TPEL.2018.2826068 Search in Google Scholar

[14] S. Golestan, J. M. Guerrero, “Conventional Synchronous Reference Frame Phase-Locked Loop is an Adaptive Complex Filter”, IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1679–1682, March 2015. https://doi.org/10.1109/TIE.2014.234159410.1109/TIE.2014.2341594 Search in Google Scholar

[15] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “DC-offset rejection in phase-locked loops: A novel approach”, IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4942–4946, 2016. https://doi.org/10.1109/TIE.2016.254621910.1109/TIE.2016.2546219 Search in Google Scholar

[16] Z. Chedjara, A. Massoum, P. Wira, A. Safa, and A. Gouichiche, “A fast and robust reference current generation algorithm for three-phase shunt active power filter,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 1, pp. 121–129, Mar. 2021. https://doi.org/10.11591/ijpeds.v12.i1.pp121-12910.11591/ijpeds.v12.i1.pp121-129 Search in Google Scholar

[17] S. Golestan, M. Monfared, and F. D. Freijedo, “Design-oriented study of advanced synchronous reference frame phase-locked loops”, IEEE Trans. Power Electron., vol. 28, no 2, p. 765–778, 2013. https://doi.org/10.1109/TPEL.2012.220427610.1109/TPEL.2012.2204276 Search in Google Scholar

[18] S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Advantages and challenges of a type-3 PLL”, IEEE Trans. Power Electron., vol. 28, no 11, p. 4985–4997, 2013. https://doi.org/10.1109/TPEL.2013.224031710.1109/TPEL.2013.2240317 Search in Google Scholar

[19] S. Golestan, F. D. Freijedo, A. Vidal, J. M. Guerrero, J. Doval-Gandoy, “A Quasi-Type-1 Phase-Locked Loop Structure”, IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6264–6270, Dec. 2014. https://doi.org/10.1109/TPEL.2014.232991710.1109/TPEL.2014.2329917 Search in Google Scholar

[20] P. Rodríguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu, and F. Blaabjerg, “Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions”, IEEE Trans. Ind. Electron., vol. 58, no 1, pp. 127–138, 2011. https://doi.org/10.1109/TIE.2010.204242010.1109/TIE.2010.2042420 Search in Google Scholar

[21] Z. Xin, X. Wang, Z. Qin, M. Lu, P. C. Loh, and F. Blaabjerg, “An Improved second-order generalized integrator based quadrature signal Generator”, IEEE Trans. Power Electron, vol. 31, no. 12, pp. 8068–8073, Dec. 2016. https://doi.org/10.1109/TPEL.2016.257664410.1109/TPEL.2016.2576644 Search in Google Scholar

[22] P. Kanjiya, V. Khadkikar, and M. S. El Moursi, “Obtaining Performance of Type-3 Phase-Locked Loop Without Compromising the Benefits of Type-2 Control System”, IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1788–796, 2018. https://doi.org/10.1109/TPEL.2017.268644010.1109/TPEL.2017.2686440 Search in Google Scholar

[23] E. Guest and N. Mijatovic, “Discrete-time complex bandpass filters for three-phase converter systems”, IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4650–4660, 2018. https://doi.org/10.1109/TIE.2018.286055410.1109/TIE.2018.2860554 Search in Google Scholar

[24] Z. Xin, R. Zhao, F. Blaabjerg, L. Zhang, and P. C. Loh, “An improved flux observer for field-oriented control of induction motors based on dual second-order generalized integrator frequency-locked loop”, IEEE J. Emerging Sel. Top. Power Electron, vol. 5, no. 1, pp. 513–525, Mar. 2017. https://doi.org/10.1109/JESTPE.2016.262366810.1109/JESTPE.2016.2623668 Search in Google Scholar

[25] A. Safa, E. M. Berkouk, Y. Messlem, Z. Chedjara, and A. Gouichiche, “A Pseudo Open Loop Synchronization technique for heavily distorted grid voltage”, Electr. Power Syst. Res., vol. 158, pp. 136–146, 2018. https://doi.org/10.1016/j.epsr.2018.01.01410.1016/j.epsr.2018.01.014 Search in Google Scholar

[26] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Is Using A Complex Control Gain in Three-phase FLLs Reasonable?”, IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2480–2484, 2020. https://doi.org/10.1109/TIE.2019.290374810.1109/TIE.2019.2903748 Search in Google Scholar

[27] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Modelling and stability assessment of single-phase grid synchronization techniques: Linear time periodic versus linear time-invariant frameworks”, IEEE Trans. Power Electron., vol. 34, no. 1, pp. 20–27, May 2018. https://doi.org/10.1109/TPEL.2018.283514410.1109/TPEL.2018.2835144 Search in Google Scholar

[28] X. Wang, L. Harnefors, and F. Blaabjerg, “Unified impedance model of grid-connected voltage-source converters”, IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1775–1787, 2017. https://doi.org/10.1109/TPEL.2017.268490610.1109/TPEL.2017.2684906 Search in Google Scholar

[29] J. Z. Zhou, H. Ding, S. Fan, Y. Zhang, and A. M. Gole, “Impact of Shortcircuit ratio and phase-locked-loop parameters on the small-signal the behavior of a VSC-HVDC converter”, IEEE Trans. Power Del., vol. 29, no. 5, pp. 2287–2296, 2014. https://doi.org/10.1109/TPWRD.2014.233051810.1109/TPWRD.2014.2330518 Search in Google Scholar

[30] X. Wang, F. Blaabjerg, and P. C. Loh, “Passivity-based stability analysis and damping injection for multi paralleled VSCs with LCL filters”, IEEE Trans. Power Electron, vol. 32, no. 11, pp. 8922–8935, 2017. https://doi.org/10.1109/TPEL.2017.265194810.1109/TPEL.2017.2651948 Search in Google Scholar

[31] X. Wang and F. Blaabjerg, “Harmonic stability in power electronic based power systems: Concept, Modelling, and Analysis”, IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2858–2870, 2018. https://doi.org/10.1109/TSG.2018.281271210.1109/TSG.2018.2812712 Search in Google Scholar

[32] L. Harnefors, R. Finger, X. Wang, H. Bai, and F. Blaabjerg, “VSC input admittance modeling and analysis above the Nyquist frequency for passivity-based stability assessment”, IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6362–6370, 2017. https://doi.org/10.1109/TIE.2017.267735310.1109/TIE.2017.2677353 Search in Google Scholar

[33] Y. Gui, X. Wang, H. Wu, and F. Blaabjerg, “Voltage Modulated Direct Power Control for Weak Grid-Connected Voltage Source Inverters”, IEEE Transactions on Power Electronics, vol. 34, no. 11, pp. 11383–11395, 2019. https://doi.org/10.1109/TPEL.2019.289826810.1109/TPEL.2019.2898268 Search in Google Scholar

[34] F. Baradarani, M. R. D. Zadeh, and M. A. Zamani, “A phase-angle estimation method for synchronization of grid -connected power electronic converters”, IEEE Trans. Power Del., vol. 30, no. 2, pp. 827–835, Apr. 2015. https://doi.org/10.1109/TPWRD.2014.236293010.1109/TPWRD.2014.2362930 Search in Google Scholar

[35] K. J. Lee, J. P. Lee, D. Shin, D. W. Yoo, and H. J. Kim, “A novel grid synchronization PLL method based on adaptive low-pass notch filter for grid-connected PCS”, IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 292–301, Jan. 2014. https://doi.org/10.1109/TIE.2013.224562210.1109/TIE.2013.2245622 Search in Google Scholar

[36] E. Robles, J. Pou, S. Recio, J. Zaragoza, J. Martin, and P. Ibaez, “Frequency adaptive stationary reference frame grid voltage sequence detector for distributed generation systems”, IEEE Trans. Ind. Electron, vol. 58, no. 9, pp. 4275–4287, Sep. 2011. https://doi.org/10.1109/TIE.2010.209835210.1109/TIE.2010.2098352 Search in Google Scholar

[37] S. Biricik, S. Redif, Ö. C. Özerdem, S. K. Khadem, and M. Basu, “Real time control of shunt active power filter under distorted grid voltage and unbalanced load condition using self-tuning filter”, IET Power Electron., vol. 7, no 7, pp. 1895–1905, 2014. https://doi.org/10.1049/iet-pel.2013.092410.1049/iet-pel.2013.0924 Search in Google Scholar

[38] A. Boussaid, A. L. Nemmour, L. Louze, and A. Khezzar, “A novel strategy for shunt active filter control”, Electric Power Systems Research, vol. 123, pp. 154–163, 2015. https://doi.org/10.1016/j.epsr.2015.02.00810.1016/j.epsr.2015.02.008 Search in Google Scholar

[39] D. Halbwachs, P. Wira, and J. Mercklé, “Adaline-based approaches for time-varying frequency estimation in power systems”, IFAC Proc. Vol., vol. 42, no. 19, pp. 31–36, 2009. https://doi.org/10.3182/20090921-3-TR-3005.0000810.3182/20090921-3-TR-3005.00008 Search in Google Scholar

[40] Z. Chedjara, A. Massoum, S. Massoum, P. Wira, A. Safa, and A. Gouichiche, “A novel robust PLL algorithm applied to the control of a shunt active power filter using a self-tuning filter concept”, IEEE International Conference on Industrial Technology (ICIT), 20–22 Feb. 2018, pp. 1124–1131. https://doi.org/10.1109/ICIT.2018.835233610.1109/ICIT.2018.8352336 Search in Google Scholar

[41] S. Golestan, F. D. Freijedo, A. Vidal, A. G. Yepes, J. M. Guerrero, and J. Doval-Gandoy, “An Efficient Implementation of Generalized Delayed Signal Cancellation PLL,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1085–1094, Feb. 2016. https://doi.org/10.1109/TPEL.2015.242065610.1109/TPEL.2015.2420656 Search in Google Scholar

[42] L. Zheng, H. Geng, and G. Yang, “Fast and robust phase estimation algorithm for heavily distorted grid conditions”, IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6845–6855, 2016. https://doi.org/10.1109/TIE.2016.258507810.1109/TIE.2016.2585078 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo