Accesso libero

Comparison of deep learning and conventional machine learning methods for classification of colon polyp types

INFORMAZIONI SU QUESTO ARTICOLO

Cita

American Institute for Cancer Research. Colorectal cancer statistics, World Cancer Research Fund. World Cancer Research Fund. https://www.wcrf.org/dietandcancer/cancer-trends/colorectal-cancer-statistics Published 2019. Accessed November 5, 2020.American Institute for Cancer ResearchColorectal cancer statistics, World Cancer Research Fund. World Cancer Research Fundhttps://www.wcrf.org/dietandcancer/cancer-trends/colorectal-cancer-statisticsPublished 2019. Accessed November 5, 2020Search in Google Scholar

Surveillance Epidemiology. Colorectal Cancer - Cancer Stat Facts. SEER Cancer Stat Facts: Colorectal Cancer. https://seer.cancer.gov/statfacts/html/colorect.html Published 2019. Accessed November 5, 2020.Surveillance Epidemiology. Colorectal Cancer - Cancer Stat Facts. SEER Cancer Stat Facts: Colorectal Cancerhttps://seer.cancer.gov/statfacts/html/colorect.htmlPublished 2019. Accessed November 52020Search in Google Scholar

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019; 69(1):7-34. doi:10.3322/caac.21551SiegelRLMillerKDJemalACancer statistics, 2019CA Cancer J Clin201969173410.3322/caac.2155130620402Open DOISearch in Google Scholar

Cooper GM, Hausman RE. The Development and Causes of Cancer. Cell A Mol Approach. 2007:743. https://www.ncbi.nlm.nih.gov/books/NBK9963/ Accessed November 15, 2020.CooperGMHausmanREThe Development and Causes of CancerCell A Mol Approach2007743https://www.ncbi.nlm.nih.gov/books/NBK9963/Accessed November 15, 2020Search in Google Scholar

Bond JH. Polyp guideline: diagnosis, treatment, and surveillance for patients with colorectal polyps. Am J Gastroenterol. 2000; 95(11):3053-3063. doi:10.1111/j.1572-0241.2000.03434.xBondJHPolyp guideline: diagnosis, treatment, and surveillance for patients with colorectal polypsAm J Gastroenterol200095113053306310.1111/j.1572-0241.2000.03434.x11095318Open DOISearch in Google Scholar

Shinya H, Wolff WI. Morphology, anatomic distribution and cancer potential of colonic polyps. An analysis of 7,000 polyps endoscopically removed. Ann Surg. 1979; 190(6):679-683. doi:10.1097/00000658-197912000-00001ShinyaHWolffWIMorphology, anatomic distribution and cancer potential of colonic polypsAn analysis of 7,000 polyps endoscopically removed. Ann Surg1979190667968310.1097/00000658-197912000-000011345622518167Open DOISearch in Google Scholar

Hasegawa S, Mitsuyama K, Kawano H, et al. Endoscopic discrimination of sessile serrated adenomas from other serrated lesions. Oncol Lett. 2011; 2(5):785-789. doi:10.3892/ol.2011.341HasegawaSMitsuyamaKKawanoHet alEndoscopic discrimination of sessile serrated adenomas from other serrated lesionsOncol Lett20112578578910.3892/ol.2011.341340809922866127Open DOISearch in Google Scholar

Krishnan SM, Yang X, Chan KL, Kumar S, Goh PMY. Intestinal abnormality detection from endoscopic images. 2002; 20(2):895-898. doi:10.1109/iembs.1998.745583KrishnanSMYangXChanKLKumarSGohPMYIntestinal abnormality detection from endoscopic images200220289589810.1109/iembs.1998.745583Open DOISearch in Google Scholar

Krishnan SM, Tan CS, Chan KL. Closed-boundary extraction of large intestinal lumen. Annu Int Conf IEEE Eng Med Biol - Proc. 1994;16(pt 1):610-611.KrishnanSMTanCSChanKLClosed-boundary extraction of large intestinal lumenAnnu Int Conf IEEE Eng Med Biol - Proc199416pt 161061110.1109/IEMBS.1994.411878Search in Google Scholar

Iakovidis DK, Maroulis DE, Karkanis SA. An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput Biol Med. 2006; 36(10):10841103. doi:10.1016/j.compbiomed.2005.09.008IakovidisDKMaroulisDEKarkanisSAAn intelligent system for automatic detection of gastrointestinal adenomas in video endoscopyComput Biol Med200636101084110310.1016/j.compbiomed.2005.09.00816293240Open DOISearch in Google Scholar

Wang P, Krishnan SM, Kugean C, Tjoa MP. Classification of endoscopic images based on texture and neural network. Annu Reports Res React Institute, Kyoto Univ. 2001; 4:3691-3695. doi:10.1109/iembs.2001.1019637WangPKrishnanSMKugeanCTjoaMPClassification of endoscopic images based on texture and neural networkAnnu Reports Res React Institute, Kyoto Univ200143691369510.1109/iembs.2001.1019637Open DOISearch in Google Scholar

Tajbakhsh N, Gurudu SR, Liang J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans Med Imaging. 2016; 35(2):630-644. doi:10.1109/TMI.2015.2487997TajbakhshNGuruduSRLiangJAutomated polyp detection in colonoscopy videos using shape and context informationIEEE Trans Med Imaging201635263064410.1109/TMI.2015.248799726462083Open DOISearch in Google Scholar

Mori Y, Kudo S, Berzin TM, et al. Computer-aided diagnosis for colonoscopy What can we expect of CAD in clinical Automated detection of colorectal polyps. Endoscopy. 2017; 813-819.MoriYKudoSBerzinTMet alComputer-aided diagnosis for colonoscopy What can we expect of CAD in clinical Automated detection of colorectal polypsEndoscopy201781381910.1055/s-0043-109430619328628561195Search in Google Scholar

Urban G, Tripathi P, Alkayali T, et al. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology. 2018; 155(4):1069-1078.e8. doi:10.1053/j.gastro.2018.06.037UrbanGTripathiPAlkayaliTet alDeep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening ColonoscopyGastroenterology2018155410691078e810.1053/j.gastro.2018.06.037617410229928897Open DOISearch in Google Scholar

Pace F, Buscema M, Dominici P, et al. Artificial neural networks are able to recognize gastro-oesophageal reflux disease patients solely on the basis of clinical data. Eur J Gastroenterol Hepatol. 2005; 17(6):605-610. doi:10.1097/00042737-200506000-00003PaceFBuscemaMDominiciPet alArtificial neural networks are able to recognize gastro-oesophageal reflux disease patients solely on the basis of clinical dataEur J Gastroenterol Hepatol200517660561010.1097/00042737-200506000-0000315879721Open DOISearch in Google Scholar

Byrne MF, Chapados N, Soudan F, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019; 68(1):94-100. doi:10.1136/gutjnl-2017-314547ByrneMFChapadosNSoudanFet alReal-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning modelGut20196819410010.1136/gutjnl-2017-314547683983129066576Open DOISearch in Google Scholar

Ganz M, Yang X, Slabaugh G. Automatic segmentation of polyps in colonoscopic narrow-band imaging data. IEEE Trans Biomed Eng. 2012; 59(8):2144-2151. doi:10.1109/TBME.2012.2195314GanzMYangXSlabaughGAutomatic segmentation of polyps in colonoscopic narrow-band imaging dataIEEE Trans Biomed Eng20125982144215110.1109/TBME.2012.219531422542647Open DOISearch in Google Scholar

Tamaki T, Yoshimuta J, Kawakami M, et al. Computer-aided colorectal tumor classification in NBI endoscopy: Using local features. Med Image Anal. 2013; 17(1):78-100. doi:10.1016/j.media.2012.08.003TamakiTYoshimutaJKawakamiMet alComputer-aided colorectal tumor classification in NBI endoscopy: Using local featuresMed Image Anal20131717810010.1016/j.media.2012.08.00323085199Open DOISearch in Google Scholar

Häfner M, Brunauer L, Payer H, et al. Computer-aided classification of zoom-endoscopical images using Fourier filters. IEEE Trans Inf Technol Biomed. 2010; 14(4):958970. doi:10.1109/TITB.2010.2044184HäfnerMBrunauerLPayerHet alComputer-aided classification of zoom-endoscopical images using Fourier filtersIEEE Trans Inf Technol Biomed201014495897010.1109/TITB.2010.204418420371417Open DOISearch in Google Scholar

Tetsuji Takayama S, Katsuki, Yasuo Takahashi M, Ohi, Shuichi Nojiri, Sumio Sakamaki, Junji Kato K, Kogawa, Hirotsugu Miyake YN. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med. 1998; 339(18):1277-1284.TetsujiTakayama SKatsukiYasuo Takahashi MOhiShuichi NojiriSumioSakamakiJunjiKato KKogawaHirotsugu Miyake YN.Aberrant crypt foci of the colon as precursors of adenoma and cancerN Engl J Med1998339181277128410.1056/NEJM1998102933918039791143Search in Google Scholar

Gono K, Obi T, Yamaguchi M, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004; 9(3):568. doi:10.1117/1.1695563GonoKObiTYamaguchiMet alAppearance of enhanced tissue features in narrow-band endoscopic imagingJ Biomed Opt20049356810.1117/1.169556315189095Open DOISearch in Google Scholar

Dg H, Kaltenbach T, Sano Y. Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterol Endosc. 2012; 54(11):3642. doi:10.11280/gee.54.3642DgHKaltenbachTSanoYValidation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imagingGastroenterol Endosc20125411364210.11280/gee.54.3642Open DOISearch in Google Scholar

Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening. Clin Gastroenterol Hepatol. 2010; 8(10):865-869.e3. doi:10.1016/j.cgh.2010.05.018HassanCPickhardtPJRexDKA resect and discard strategy would improve cost-effectiveness of colorectal cancer screeningClin Gastroenterol Hepatol2010810865869e310.1016/j.cgh.2010.05.01820621680Open DOISearch in Google Scholar

Mesejo P, Pizarro D, Abergel A, et al. Computer-aided classification of gastrointestinal lesions in regular colonos-copy. IEEE Trans Med Imaging. 2016; 35(9):2051-2063. doi:10.1109/TMI.2016.2547947MesejoPPizarroDAbergelAet alComputer-aided classification of gastrointestinal lesions in regular colonos-copyIEEE Trans Med Imaging20163592051206310.1109/TMI.2016.254794728005009Open DOISearch in Google Scholar

Cai L, Zhu J, Zeng H, Chen J, Cai C, Ma KK. HOG-assisted deep feature learning for pedestrian gender recognition. J Franklin Inst. 2018; 355(4):1991-2008. doi:10.1016/j. jfranklin.2017.09.003CaiLZhuJZengHChenJCaiCMaKKHOG-assisted deep feature learning for pedestrian gender recognitionJ Franklin Inst201835541991200810.1016/j.jfranklin.2017.09.003Open DOISearch in Google Scholar

Cao X, Wu C, Yan P, Li X. Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos. IEEE Int Conf Image Process. 2011; 2469-2472.CaoXWuCYanPLiXLinear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videosIEEE Int Conf Image Process20112469247210.1109/ICIP.2011.6116132Search in Google Scholar

Deeba F, Bui FM, Wahid KA. Computer-aided polyp detection based on image enhancement and saliency-based selection. Biomed Signal Process Control. 2020; 55:101530. doi:10.1016/j.bspc.2019.04.007DeebaFBuiFMWahidKAComputer-aided polyp detection based on image enhancement and saliency-based selectionBiomed Signal Process Control20205510153010.1016/j.bspc.2019.04.007Open DOISearch in Google Scholar

Shin Y, Balasingham I. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2017; 3277-3280. doi:10.1109/ EMBC.2017.8037556ShinYBalasinghamIComparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classificationProc Annu Int Conf IEEE Eng Med Biol Soc EMBS20173277328010.1109/EMBC.2017.803755629060597Open DOISearch in Google Scholar

Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. Vol I.; 2005; 886-893. doi:10.1109/ CVPR.2005.177DalalNTriggsBHistograms of oriented gradients for human detectionProceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR2005Vol I200588689310.1109/CVPR.2005.177Open DOISearch in Google Scholar

Cutler DR, Edwards TC, Beard KH, et al. Random forests for classification in ecology. Ecology. 2007; 88(11):27832792. doi:10.1890/07-0539.1CutlerDREdwardsTCBeardKHet alRandom forests for classification in ecologyEcology200788112783279210.1890/07-0539.118051647Open DOISearch in Google Scholar

Fushiki T. Estimation of prediction error by using K-fold cross-validation. Stat Comput. 2011; 21(2):137-146. doi:10.1007/s11222-009-9153-8FushikiTEstimation of prediction error by using K-fold cross-validationStat Comput201121213714610.1007/s11222-009-9153-8Open DOISearch in Google Scholar

Koyejo O, Natarajan N, Ravikumar P, Dhillon IS. Consistent binary classification with generalized performance metrics. Adv Neural Inf Process Syst. 2014; 3(January):2744-2752.KoyejoONatarajanNRavikumarPDhillonISConsistent binary classification with generalized performance metricsAdv Neural Inf Process Syst20143January27442752Search in Google Scholar

Montgomery DC, Runger GC, Wiley J. Applied Statistics and Probability for Engineers Third Edition; 2003.MontgomeryDCRungerGCWileyJApplied Statistics and Probability for Engineers Third Edition;2003Search in Google Scholar

Alhindi TJ, Kalra S, Ng KH, Afrin A, Tizhoosh HR. Comparing LBP, HOG and Deep Features for Classification of Histopathology Images. Proc Int Jt Conf Neural Networks. 2018; 2018-July. doi:10.1109/IJCNN.2018.8489329AlhindiTJKalraSNgKHAfrinATizhooshHRComparing LBP, HOG and Deep Features for Classification of Histopathology ImagesProc Int Jt Conf Neural Networks20182018-July10.1109/IJCNN.2018.8489329Open DOISearch in Google Scholar

Aslan MF, Durdu A, Sabanci K, Mutluer MA. CNN and HOG based comparison study for complete occlusion handling in human tracking. Meas J Int Meas Confed. 2020; 158:107704. doi:10.1016/j.measurement.2020.107704AslanMFDurduASabanciKMutluerMACNN and HOG based comparison study for complete occlusion handling in human trackingMeas J Int Meas Confed202015810770410.1016/j.measurement.2020.107704Open DOISearch in Google Scholar

Aslan MF, Durdu A, Sabanci K, Mutluer MA. CNN and HOG based comparison study for complete occlusion handling in human tracking. J Int Meas Confed. 2020; 158. doi:10.1016/j.measurement.2020.107704AslanMFDurduASabanciKMutluerMACNN and HOG based comparison study for complete occlusion handling in human trackingJ Int Meas Confed202015810.1016/j.measurement.2020.107704Open DOISearch in Google Scholar

Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci US A. 2018; 115(13):E2970-E2979. doi:10.1073/pnas.1717139115MobadersanyPYousefiSAmgadMet alPredicting cancer outcomes from histology and genomics using convolutional networksProc Natl Acad Sci US A201811513E2970E297910.1073/pnas.1717139115Open DOISearch in Google Scholar

Ahmad OF, Soares AS, Mazomenos E, et al. Artificial intelligence and computer-aided diagnosis in colonos-copy: current evidence and future directions. Lancet Gastroenterol Hepatol. 2019; 4(1):71-80. doi:10.1016/ S2468-1253(18)30282-6AhmadOFSoaresASMazomenosEet alArtificial intelligence and computer-aided diagnosis in colonos-copy: current evidence and future directionsLancet Gastroenterol Hepatol201941718010.1016/S2468-1253(18)30282-6Open DOISearch in Google Scholar

Billah M, Waheed S, Rahman MM. An automatic gastrointestinal polyp detection system in video endoscopy using fusion of color wavelet and convolutional neural network features. Int J Biomed Imaging. 2017; 2017:1-10. doi:10.1155/2017/9545920BillahMWaheedSRahmanMMAn automatic gastrointestinal polyp detection system in video endoscopy using fusion of color wavelet and convolutional neural network featuresInt J Biomed Imaging2017201711010.1155/2017/9545920557429628894460Open DOISearch in Google Scholar

Jha D, Ali S, Johansen HD, et al. Real-time polyp detection, localisation and segmentation in colonoscopy using deep learning. arXiv Prepr arXiv201107631. November 2020. http://arxiv.org/abs/2011.07631 Accessed December 24, 2020.JhaDAliSJohansenHDet alReal-time polyp detection, localisation and segmentation in colonoscopy using deep learningarXiv Prepr arXiv201107631November2020http://arxiv.org/abs/2011.07631Accessed December 24, 2020Search in Google Scholar

Haj-Manouchehri A, Mohammadi HM. Polyp detection using CNNs in colonoscopy video. IET Comput Vis. 2020; 14(5):241-247. doi:10.1049/iet-cvi.2019.0300Haj-ManouchehriAMohammadiHMPolyp detection using CNNs in colonoscopy videoIET Comput Vis202014524124710.1049/iet-cvi.2019.0300Open DOISearch in Google Scholar

Zhang R, Zheng Y, Mak TWC, et al. Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J Biomed Heal Informatics. 2017; 21(1):41-47. doi:10.1109/ JBHI.2016.2635662ZhangRZhengYMakTWCet alAutomatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domainIEEE J Biomed Heal Informatics2017211414710.1109/JBHI.2016.263566228114040Open DOISearch in Google Scholar

Wang Y, Pomeroy MJ, Cao W, et al. Differentiation of polyps by clinical colonoscopy via integrated color information, image derivatives and machine learning. 2019; (March 2019):106. doi:10.1117/12.2512578WangYPomeroyMJCaoWet alDifferentiation of polyps by clinical colonoscopy via integrated color information, image derivatives and machine learning2019March 201910610.1117/12.2512578Open DOISearch in Google Scholar

Min M, Su S, He W, Bi Y, Ma Z, Liu Y. Computer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histology. Sci Rep. 2019; 9(1):1-8. doi:10.1038/s41598-019-39416-7MinMSuSHeWBiYMaZLiuYComputer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histologySci Rep2019911810.1038/s41598-019-39416-7639349530814661Open DOISearch in Google Scholar

Sharma A, Kumar R, Mansotra V. Handwritten digit recognition using convolutional neural networks. Int J Innov Res Comput Commun Eng (An ISO Certif Organ. 2016; 3297(6):11449-11455. doi:10.15680/IJIRCCE.2016SharmaAKumarRMansotraVHandwritten digit recognition using convolutional neural networksInt J Innov Res Comput Commun Eng (An ISO Certif Organ201632976114491145510.15680/IJIRCCE.2016Open DOISearch in Google Scholar

Ghosh MMA, Maghari AY. A comparative study on handwriting digit recognition using neural networks. Proc - 2017 Int Conf Promis Electron Technol ICPET 2017. 2017; 77-81. doi:10.1109/ICPET.2017.20GhoshMMAMaghariAYA comparative study on handwriting digit recognition using neural networksProc - 2017 Int Conf Promis Electron Technol ICPET 20172017778110.1109/ICPET.2017.20Open DOISearch in Google Scholar

eISSN:
2564-615X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other