Accesso libero

Proteases with caspase 3-like activity participate in cell death during stress-induced microspore embryogenesis of Brassica napus

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Maluszynski M, Kasha K, Forster BP, Szarejko I, editors. Doubled haploid production in crop plants: a manual. Springer Science & Business Media; 2013.MaluszynskiMKashaKForsterBPSzarejkoIDoubled haploid production in crop plants: a manualSpringer Science & Business Media2013Search in Google Scholar

Ferrie AM, Caswell KL. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell, Tissue and Organ Culture (PCTOC). 2011; 104(3): 301-9.10.1007/s11240-010-9800-yFerrieAMCaswellKLIsolated microspore culture techniques and recent progress for haploid and doubled haploid plant productionPlant Cell, Tissue and Organ Culture (PCTOC)201110433019Open DOISearch in Google Scholar

Testillano PS. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. Journal of Experimental Botany. 2019; 70(11): 2965-78.10.1093/jxb/ery464TestillanoPSMicrospore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvementJournal of Experimental Botany2019701129657830753698Open DOISearch in Google Scholar

Germana MA, Lambardi M, editors. In vitro embryogenesis in higher plants. Humana Press; 2016.GermanaMALambardiMIn vitro embryogenesis in higher plantsHumana Press;201610.1007/978-1-4939-3061-6Search in Google Scholar

Bárány I, González-Melendi P, Fadón B, Mitykó J, Risueño MC, Testillano PS. Microspore-derived embryogenesis in pepper Capsicum annuum L.): subcellular rearrangements through development. Biology of the Cell. 2005; 97(9): 709-22.10.1042/BC2004014215910280BárányIGonzález-MelendiPFadónBMitykóJRisueñoMCTestillanoPSMicrospore-derived embryogenesis in pepper Capsicum annuum L.): subcellular rearrangements through developmentBiology of the Cell20059797092215910280Open DOISearch in Google Scholar

Prem D, Solís MT, Bárány I, Rodríguez-Sanz H, Risueño MC, Testillano PS. A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus BMC Plant Biology. 2012; 12(1): 127.10.1186/1471-2229-12-12722857779PremDSolísMTBárányIRodríguez-SanzHRisueñoMCTestillanoPSA new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napusBMC Plant Biology2012121127346460922857779Open DOISearch in Google Scholar

Shariatpanahi ME, Belogradova K, Hessamvaziri L, Heberle-Bors E, Touraev A. Efficient embryogenesis and regeneration in freshly isolated and cultured wheat Triticum aestivum L.) microspores without stress pretreatment. Plant Cell Reports. 2006; 25(12): 1294-9.10.1007/s00299-006-0205-716841216ShariatpanahiMEBelogradovaKHessamvaziriLHeberle-BorsETouraevAEfficient embryogenesis and regeneration in freshly isolated and cultured wheat Triticum aestivum L.) microspores without stress pretreatmentPlant Cell Reports200625121294916841216Open DOISearch in Google Scholar

Satpute GK, Long H, Seguí-Simarro JM, Risueño MC, Testillano PS. Cell architecture during gametophytic and embryogenic micro-spore development in Brassica napus L. Acta Physiologiae Plantarum. 2005; 27(4): 665-74.10.1007/s11738-005-0070-ySatputeGKLongHSeguí-SimarroJMRisueñoMCTestillanoPSCell architecture during gametophytic and embryogenic micro-spore development in Brassica napus LActa Physiologiae Plantarum200527466574Open DOISearch in Google Scholar

Rodríguez-Serrano M, Bárány I, Prem D, Coronado MJ, Risueño MC, Testillano PS. NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. Journal of Experimental Botany. 2011; 63(5): 2007-24.22197894Rodríguez-SerranoMBárányIPremDCoronadoMJRisueñoMCTestillanoPSNO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barleyJournal of Experimental Botany201163520072410.1093/jxb/err400329539122197894Search in Google Scholar

Bárány I, Berenguer E, Solís MT, Pérez-Pérez Y, Santamaría ME, Crespo JL, Risueño MC, Díaz I, Testillano PS. Autophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barley. Journal of Experimental Botany. 2018; 69(6): 1387-402.2930962410.1093/jxb/erx455BárányIBerenguerESolísMTPérez-PérezYSantamaríaMECrespoJLRisueñoMCDíazITestillanoPSAutophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barleyJournal of Experimental Botany20186961387402601903729309624Search in Google Scholar

Pérez-Pérez Y, Carneros E, Berenguer E, Solís MT, Bárány I, Pintos B, Gómez-Garay A, Risueño MC, Testillano PS. Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suber Frontiers in Plant Science. 2019; 9: 1915.10.3389/fpls.2018.0191530671070Pérez-PérezYCarnerosEBerenguerESolísMTBárányIPintosBGómez-GarayARisueñoMCTestillanoPSPectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suberFrontiers in Plant Science201991915633153830671070Open DOISearch in Google Scholar

Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and regulation of programmed cell death in plant development. Annual Review of Cell and Developmental Biology. 2016; 32: 441-68.10.1146/annurev-cellbio-111315-12491527298090DanevaAGaoZVan DurmeMNowackMKFunctions and regulation of programmed cell death in plant developmentAnnual Review of Cell and Developmental Biology2016324416827298090Open DOISearch in Google Scholar

Huysmans M, Lema S, Coll NS, Nowack MK. Dying two deaths — programmed cell death regulation in development and disease. Current Opinion in Plant Biology. 2017; 35: 37-44.10.1016/j.pbi.2016.11.00527865098HuysmansMLemaSCollNSNowackMKDying two deaths — programmed cell death regulation in development and diseaseCurrent Opinion in Plant Biology201735374427865098Open DOISearch in Google Scholar

Van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LA. Morphological classification of plant cell deaths. Cell Death and Differentiation. 2011; 18(8): 1241.2149426310.1038/cdd.2011.36VanDoorn WGBeersEPDanglJLFranklin-TongVEGalloisPHara-NishimuraIJonesAMKawai-YamadaMLamEMundyJMurLAMorphological classification of plant cell deathsCell Death and Differentiation20111881241317209321494263Search in Google Scholar

Minina EA, Coll NS, Tuominen H, Bozhkov PV. Metacaspases versus caspases in development and cell fate regulation. Cell Death and Differentiation. 2017; 24(8): 1314.10.1038/cdd.2017.1828234356MininaEACollNSTuominenHBozhkovPVMetacaspases versus caspases in development and cell fate regulationCell Death and Differentiation20172481314552044928234356Open DOISearch in Google Scholar

Poręba M, Stróżyk A, Salvesen GS, Drąg M. Caspase substrates and inhibitors. Cold Spring Harbor Perspectives in Biology. 2013; 5(8): a008680.23788633PorębaMStróżykASalvesenGSDrągMCaspase substrates and inhibitorsCold Spring Harbor Perspectives in Biology201358a00868010.1101/cshperspect.a008680372127623788633Search in Google Scholar

Buono RA, Hudecek R, Nowack MK. Plant proteases during developmental programmed cell death. Journal of Experimental Botany. 2019; 70(7): 2097-112.3079318210.1093/jxb/erz072BuonoRAHudecekRNowackMKPlant proteases during developmental programmed cell deathJournal of Experimental Botany20197072097112761233030793182Search in Google Scholar

Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, Von Arnold S. VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death and Differentiation. 2004; 11(2): 175.10.1038/sj.cdd.440133014576770BozhkovPVFilonovaLHSuarezMFHelmerssonASmertenkoAPZhivotovskyBVon ArnoldSSVEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formationCell Death and Differentiation200411217514576770Open DOISearch in Google Scholar

Gunawardena AH, Greenwood JS, Dengler NG. Programmed cell death remodels lace plant leaf shape during development. The Plant Cell. 2004; 16(1): 60-73.10.1105/tpc.01618814688291GunawardenaAHGreenwoodJSDenglerNGProgrammed cell death remodels lace plant leaf shape during developmentThe Plant Cell2004161607330139514688291Open DOISearch in Google Scholar

Solís MT, Chakrabarti N, Corredor E, Cortés-Eslava J, Rodríguez-Serrano M, Biggiogera M, Risueño MC, Testillano PS. Epigenetic changes accompany developmental programmed cell death in tapetum cells. Plant and Cell Physiology. 2013; 55(1): 16-29.SolísMTChakrabartiNCorredorECortés-EslavaJRodríguez-SerranoMBiggiogeraMRisueñoMCTestillanoPSEpigenetic changes accompany developmental programmed cell death in tapetum cellsPlant and Cell Physiology2013551162910.1093/pcp/pct15224151205Search in Google Scholar

Van Durme M, Nowack MK. Mechanisms of developmentally controlled cell death in plants. Current Opinion in Plant Biology. 2016; 29: 29-37.10.1016/j.pbi.2015.10.01326658336VanDurme MNowackMKMechanisms of developmentally controlled cell death in plantsCurrent Opinion in Plant Biology201629293726658336Open DOISearch in Google Scholar

Solís MT, Berenguer E, Risueño MC, Testillano PS. BnPME is progressively induced after microspore reprogramming to embryogenesis, correlating with pectin de-esterification and cell differentiation in Brassica napus BMC Plant Biology. 2016; 16(1): 176.2751474810.1186/s12870-016-0863-8SolísMTBerenguerERisueñoMCTestillanoPSBnPME is progressively induced after microspore reprogramming to embryogenesis, correlating with pectin de-esterification and cell differentiation in Brassica napusBMC Plant Biology2016161176Search in Google Scholar

Solís MT, El-Tantawy AA, Cano V, Risueño MC, Testillano PS. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Frontiers in Plant Science. 2015; 6: 472.26161085SolísMTEl-TantawyAACanoVRisueñoMCTestillanoPS5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barleyFrontiers in Plant Science2015647210.3389/fpls.2015.00472Search in Google Scholar

Berenguer E, Bárány I, Solís MT, Pérez-Pérez Y, Risueño MC, Testillano PS. Inhibition of histone H3K9 methylation by BIX-01294 promotes stress-induced microspore totipotency and enhances embryogenesis initiation. Frontiers in Plant Science. 2017; 8: 1161.2870653310.3389/fpls.2017.01161BerenguerEBárányISolísMTPérez-PérezYRisueñoMCTestillanoPSInhibition of histone H3K9 methylation by BIX-01294 promotes stress-induced microspore totipotency and enhances embryogenesis initiationFrontiers in Plant Science201781161Search in Google Scholar

Gervais C, Newcomb W, Simmonds DH. Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brassica napus L. cv. Topas. Proto-plasma. 2000; 213(3-4): 194-202.GervaisCNewcombWSimmondsDHRearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brassica napus Lcv. Topas. Proto-plasma20002133-419420210.1007/BF01282157Search in Google Scholar

Rodríguez-Sanz H, Solís MT, López MF, Gómez-Cadenas A, Risueño MC, Testillano PS. Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus Plant and Cell Physiology. 2015; 56(7): 1401-17.10.1093/pcp/pcv058Rodríguez-SanzHSolísMTLópezMFGómez-CadenasARisueñoMCTestillanoPSAuxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napusPlant and Cell Physiology2015567140117Open DOISearch in Google Scholar

Maraschin SD, Caspers M, Potokina E, Wülfert F, Graner A, Spaink HP, Wang M. cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiologia Plantarum. 2006; 127(4): 535-50.10.1111/j.1399-3054.2006.00673.xMaraschinSDCaspersMPotokinaEWülfertFGranerASpainkHPWangMcDNA array analysis of stress-induced gene expression in barley androgenesisPhysiologia Plantarum2006127453550Open DOISearch in Google Scholar

Uren AG, O’Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Molecular Cell. 2000; 6(4): 961-7.UrenAGO’RourkeKAravindLPisabarroMTSeshagiriSKooninEVDixitVMIdentification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphomaMolecular Cell200064961710.1016/S1097-2765(00)00094-0Search in Google Scholar

Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV. Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Current Biology. 2004; 14(9): R339-40.10.1016/j.cub.2004.04.019SuarezMFFilonovaLHSmertenkoASavenkovEIClaphamDHvon ArnoldSZhivotovskyBBozhkovPVMetacaspase-dependent programmed cell death is essential for plant embryogenesisCurrent Biology2004149R3394015120084Open DOISearch in Google Scholar

Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A. Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proceedings of the National Academy of Sciences. 2005; 102(40): 14463-8.10.1073/pnas.0506948102BozhkovPVSuarezMFFilonovaLHDanielGZamyatninAARodriguez-NietoSZhivotovskyBSmertenkoACysteine protease mcII-Pa executes programmed cell death during plant embryogenesisProceedings of the National Academy of Sciences200510240144638124232616183741Open DOISearch in Google Scholar

Bollhöner B, Zhang B, Stael S, Denancé N, Overmyer K, Goffner D, Van Breusegem F, Tuominen H. Post mortem function of AtMC9 in xylem vessel elements. New Phytologist. 2013; 200(2): 498-510.10.1111/nph.12387BollhönerBZhangBStaelSDenancéNOvermyerKGoffnerDVanBreusegem FTuominenH.Post mortem function of AtMC9 in xylem vessel elementsNew Phytologist2013200249851023834670Open DOISearch in Google Scholar

Vercammen D, Van De Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inzé D, Van Breusegem F. Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. Journal of Biological Chemistry. 2004; 279(44): 45329-36.10.1074/jbc.M406329200VercammenDVan De CotteBDe JaegerGEeckhoutDCasteelsPVandepoeleKVandenbergheIVan BeeumenJInzéDVan BreusegemFType II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysineJournal of Biological Chemistry200427944453293615326173Open DOISearch in Google Scholar

Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV. Metacaspases. Cell Death and Differentiation. 2011; 18(8): 1279.2159746210.1038/cdd.2011.66TsiatsianiLVanBreusegem FGalloisPZavialovALamEBozhkovPVMetacaspasesCell Death and Differentiation20111881279317210321597462Search in Google Scholar

Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P. Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against Apoptotic Death. Journal of Biological Chemistry. 2004; 279(1): 779-87.10.1074/jbc.M304468200DanonARotariVIGordonAMailhacNGalloisPUltraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against Apoptotic DeathJournal of Biological Chemistry200427917798714573611Open DOISearch in Google Scholar

Ge Y, Cai YM, Bonneau L, Rotari V, Danon A, McKenzie EA, McLellan H, Mach L, Gallois P. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death and Differentiation. 2016; 23(9): 1493.2705831610.1038/cdd.2016.34GeYCaiYMBonneauLRotariVDanonAMcKenzieEAMcLellanHMachLGalloisPInhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in ArabidopsisCell Death and Differentiation20162391493507242627058316Search in Google Scholar

Bonneau L, Ge Y, Drury GE, Gallois P. What happened to plant caspases?. Journal of Experimental Botany. 2008; 59(3): 491-9.10.1093/jxb/erm352BonneauLGeYDruryGEGalloisPWhat happened to plant caspases?Journal of Experimental Botany2008593491918272922Open DOISearch in Google Scholar

Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, Nishimura M, Hara-Nishimura I. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes & Development. 2009; 23(21): 2496-506.1983376110.1101/gad.1825209HatsugaiNIwasakiSTamuraKKondoMFujiKOgasawaraKNishimuraMHara-NishimuraIA novel membrane fusion-mediated plant immunity against bacterial pathogensGenes & Development200923212496506277974219833761Search in Google Scholar

Balakireva A, Zamyatnin A. Indispensable role of proteases in plant innate immunity. International Journal of Molecular Sciences. 2018; 19(2): 629.10.3390/ijms19020629BalakirevaAZamyatninAIndispensable role of proteases in plant innate immunityInternational Journal of Molecular Sciences2018192629585585129473858Open DOISearch in Google Scholar

Reape TJ, McCabe PF. Apoptotic-like regulation of programmed cell death in plants. Apoptosis. 2010; 15(3): 249-56.10.1007/s10495-009-0447-220094801ReapeTJMcCabePFApoptotic-like regulation of programmed cell death in plantsApoptosis20101532495620094801Open DOISearch in Google Scholar

eISSN:
2564-615X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other