Accesso libero

Modelling Support Mechanism Impact on Electric Vehicle Registration in Latvia

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Barisa, A. (2016.) Modelling Transition Policies to a Low-Carbon Road Transport in Latvia by 2030 Dissertation. Riga Technical University, Faculty of Power and Electrical Engineering, Institute of Energy Systems and Environment. Riga: RTU Press 2016. Retrieved from https://ortus.rtu.lv/science/en/publications/22594/attachments/1108Search in Google Scholar

Barisa, A., Rosa, M., Kisele, A. (2015). Introducing Electric Mobility in Latvian Municipalities: Results of a Survey. Energy Procedia, 95, 50–57. https://doi.org/10.1016/j.egypro.2016.09.01510.1016/j.egypro.2016.09.015Open DOISearch in Google Scholar

Breetz, H. L., & Salon, D. (2018). Do Electric Vehicles Need Subsidies? Ownership Costs for Conventional, Hybrid, and Electric Vehicles in 14 U.S. cities. Energy Policy, 120, 238–249. https://doi.org/10.1016/j.enpol.2018.05.03810.1016/j.enpol.2018.05.038Open DOISearch in Google Scholar

The Cabinet of Ministers of the Republic of Latvia. (2016). Amendments to the Law on the Vehicle Operation Tax and Company Car Tax (23.11.2016.) Latvijas Vēstnesis, 241 (5813), 10.12.2016. Retrieved from https://likumi.lv/ta/id/287291-grozijumi-transportlidzekla-ekspluatacijas-nodokla-un-uznemumu-vieglo-transportlidzeklu-nodokla-likumaSearch in Google Scholar

The Cabinet of Ministers of the Republic of Latvia (2015). Cabinet regulation No. 279 (02.06.2015). Road traffic regulations. Retrieved from https://likumi.lv/ta/en/id/274865-road-traffic-regulationsSearch in Google Scholar

The Cabinet of Ministers of the Republic of Latvia. (2014). Cabinet regulation Nr. 78 (04.02.2014). Climate change financial instrument project competition “GHG emission reduction in transport sector – support to EV and charging infrastructure development“ provision.Search in Google Scholar

Central Statistics Bureau of Latvia (2016). Average Fuel Consumption per 100 km (l). Retrieved from https://www.csb.gov.lv/en/statistics/statistics-by-theme/environment-energy/energy-consumption/tables/epm450/average-fuel-consumption-100-km-lSearch in Google Scholar

The European Parliament and the Council (2009). Directive 2009/28/EC of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028&from=ENSearch in Google Scholar

EEA. (2017). Greenhouse Gas Emissions from Transport. Retrieved from https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-11Search in Google Scholar

European Automobile Manufacturers’ Association (ACEA). (2018). Overview on Tax Incentives for Electric Vehicles in the EU. ACEA. Retrieved from https://www.acea.be/uploads/publications/EV_incentives_overview_2018.pdfSearch in Google Scholar

Griffin, A. (2017). Volvo to Make Only Electric Cars from 2019, Marking the end of the Petrol Engine. Independent. Retrieved from http://www.independent.co.uk/life-style/gadgets-and-tech/news/volvo-car-electric-hybrid-vehicle-petrol-diesel-combustion-engine-a7824316.htmlSearch in Google Scholar

ICCT. (2018). European Vehicle Market Statistics. Pocketbook 2018/19. ICCT. pp. 6–7. Available: https://www.theicct.org/sites/default/files/publications/ICCT_Pocketbook_2018_Final_20181205.pdfSearch in Google Scholar

Infometrics (2015). A Model for Projecting the Uptake of Electric Vehicles for Ministry of Transport. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=2ahUKEwie8s2I4rvfAhVGDywKHVsVARYQFjAJegQICRAC&url=https%3A%2F%2Fwww.transport.govt.nz%2Fassets%2FUploads%2FResearch%2FDocuments%2F2015-Transport-Knowledge-Presentations%2FElectric-vehicles-future-cost-and-uptake-scenarios-Bronwyn-Lauten-Ministry-of-Transport.pdf&usg=AOvVaw1reboel6osNwowD83TqpaaSearch in Google Scholar

Janga, D-C., Kim, B., & Lee, S-Y. (2018). A Two-Sided Market Platform Analysis for the Electric Vehicle T Adoption: Firm Strategies and Policy Design. Transportation Research Part D: Transport and Environment, 62, 646–658. https://doi.org/10.1016/j.trd.2018.02.00210.1016/j.trd.2018.02.002Open DOISearch in Google Scholar

Lane, B.W., Dumortier, J., Carley, S., Siddiki, S., Clark-Sutton, K., Graham, J.D. (2018). All Plug-In Electric Vehicles are not the Same: Predictors of Preference for a Plug-In Hybrid Versus a Battery-Electric Vehicle. Transportation Research Part D: Transport and Environment, 65, 1–13. https://doi.org/10.1016/j.trd.2018.07.01910.1016/j.trd.2018.07.019Open DOISearch in Google Scholar

Liebreich, M. (2017). Breaking Clean. London Summit 2017. Bloomberg New Energy Finance. Retrieved from https://data.bloomberglp.com/bnef/sites/14/2017/09/BNEF-Summit-London-2017-Michael-Liebreich-State-of-the-Industry.pdfSearch in Google Scholar

Liu, D., & Xiao, B. (2018). Exploring the Development of Electric Vehicles under Policy Incentives: A Scenario-Based System Dynamics Model. Energy Policy, 120, 8–23. https://doi.org/10.1016/j.enpol.2018.04.07310.1016/j.enpol.2018.04.073Open DOISearch in Google Scholar

Ministry of Environmental Protection and Regional development of Latvia. (2017). Report on Climate Change Financial Instrument Operation in 2016. Retrieved from http://www.varam.gov.lv/in_site/tools/download.php?file=files/text/KPFI/lik//VARAMZino_KPFI_darbiba_2016.pdfSearch in Google Scholar

Noori, M., & Tatari, O. (2016). Development of an Agent-Based Model for Regional Market Penetration Projections of Electric Vehicles in the United States. Energy, 96, 215–230. https://doi.org/10.1016/j.energy.2015.12.01810.1016/j.energy.2015.12.018Open DOISearch in Google Scholar

Pasaoglu, G., Fiorello, D., Martino, A., Scarcella, G., Alemanno, A., Zubaryeva, A., Thiel, C. (2012). Driving and Parking Patterns of European Car Drivers - a Mobility Survey. Joint Research Centre. Institute for Institute for Energy and Transport. Luxembourg: Publications Office of the European Union. Retrieved from http://publications.europa.eu/resource/cellar/2d5d968f-4f4c-4ee0-82e2-a7a136dfd187.0001.02/DOC_1Search in Google Scholar

Plotz, P., Gnann, T., & Sprei, F. (2017). What are the Effects of Incentives on Electric Vehicle Sales in Europe? Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe, Germany. Retrieved 26.09.2018 from https://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2017/4-mobility-transport-and-smart-and-sustainable-cities/what-are-the-effects-of-incentives-on-plug-in-electric-vehicle-sales-in-europe/2017/4-188-17_Ploetz.pdf/Search in Google Scholar

Priessner, A., Sposato, R., & Hampl, N. (2018). Predictors of Electric Vehicle Adoption: An Analysis of Potential Electric T Vehicle Drivers in Austria. Energy Policy, 122, 701–714. https://doi.org/10.1016/j.enpol.2018.07.05810.1016/j.enpol.2018.07.058Open DOISearch in Google Scholar

Road Traffic Safety Directorate. (2018). Press release: EV charging station network becomes operational. Retrieved from https://www.csdd.lv/jaunumi/darbu-uzsak-elektromobilu-atras-uzlades-staciju-tiklsSearch in Google Scholar

Rošā, M., Blumberga, A., & Blumberga, D. (2015). Modelling Sustainable Road Transport Strategies in Latvia. International Congress on Energy and Environment Engineering and Management: Extended Abstracts Book, France, Paris, 22–24 July, 2015.Search in Google Scholar

Sierzchula, W., Bakker, S., Maat, K., & van Wee, B. (2014). The Influence of Financial Incentives and other Socio-Economic Factors on Electric Vehicle Adoption. Energy Policy, 68, 183–194. https://doi.org/10.1016/j.enpol.2014.01.04310.1016/j.enpol.2014.01.043Open DOISearch in Google Scholar

Vaughn, A. (2017). Jaguar Land Rover to Make Only Electric or Hybrid Cars from 2020. The Guardian. Retrieved 11.01.2018 from https://www.theguardian.com/business/2017/sep/07/jaguar-land-rover-electric-hybrid-cars-2020Search in Google Scholar

Wesseling, J. H. (2016). Explaining Variance in National Electric Vehicle Policies. Environmental Innovation and Societal Transitions, 21, 28–38. https://doi.org/10.1016/j.eist.2016.03.00110.1016/j.eist.2016.03.001Open DOISearch in Google Scholar

Yang, Z., Slowik, P., Lutsey, N., & Searle, S. (2016). Principles for Effective Electric Vehicle Incentive Design. USA: International Council on Clean Transportation. White paper. Retrieved from https://www.theicct.org/sites/default/files/publications/ICCT_IZEV-incentives-comp_201606.pdfSearch in Google Scholar

Zauers, A. (2016). EVs to Latvia are Coming Slowly and Leisurely (in Latvian). Diena. Retrieved from https://www.diena.lv/raksts/izklaide/tehnologijas/elektromobili-latvija-ienak-leni-un-nesteidzigi-14160312Search in Google Scholar

eISSN:
2256-0394
ISSN:
1407-7337
Lingua:
Inglese