Accesso libero

Chasing Returns of Open-End Investment Funds Using Recurrent Neural Networks. A Long-Term Study

 e   
14 feb 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Anish, C. M., & Majhi, B. (2016). An Ensemble Model for Net Asset Value Prediction. 2015 IEEE Power, Communication and Information Technology Conference, PCITC 2015 - Proceedings, 392–396. https://doi.org/10.1109/PCITC.2015.7438197 AnishC. M. MajhiB. 2016 An Ensemble Model for Net Asset Value Prediction 2015 IEEE Power, Communication and Information Technology Conference, PCITC 2015 - Proceedings 392 396 https://doi.org/10.1109/PCITC.2015.7438197 Search in Google Scholar

Anish, C. M., Majhi, B., & Majhi, R. (2018). A Novel Hybrid Model Using RBF and PSO for Net Asset Value Prediction. In S. Dash, B. Tripathy, & A. Rahman (Eds.), Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms (pp. 54–72). IGI Global. https://doi.org/10.4018/978-1-5225-2857-9.CH003 AnishC. M. MajhiB. MajhiR. 2018 A Novel Hybrid Model Using RBF and PSO for Net Asset Value Prediction In DashS. TripathyB. RahmanA. (Eds.), Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms 54 72 IGI Global https://doi.org/10.4018/978-1-5225-2857-9.CH003 Search in Google Scholar

Barras, L., Scaillet, O., & Wermers, R. (2010). False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas. Journal of Finance, 65(1), 179–216. https://doi.org/10.1111/j.1540-6261.2009.01527.x BarrasL. ScailletO. WermersR. 2010 False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas Journal of Finance 65 1 179 216 https://doi.org/10.1111/j.1540-6261.2009.01527.x Search in Google Scholar

Basu, A. K., & Huang-Jones, J. (2015). The Performance of Diversified Emerging Market Equity Funds. Journal of International Financial Markets, Institutions and Money, 35, 116–131. https://doi.org/10.1016/j.intfin.2015.01.002 BasuA. K. Huang-JonesJ. 2015 The Performance of Diversified Emerging Market Equity Funds Journal of International Financial Markets, Institutions and Money 35 116 131 https://doi.org/10.1016/j.intfin.2015.01.002 Search in Google Scholar

Berk, J. B., & Green, R. C. (2004). Mutual Fund Flows and Performance in Rational Markets. Journal of Political Economy, 112(6), 1269–1295. https://doi.org/10.1086/424739 BerkJ. B. GreenR. C. 2004 Mutual Fund Flows and Performance in Rational Markets Journal of Political Economy 112 6 1269 1295 https://doi.org/10.1086/424739 Search in Google Scholar

Bhattacharya, U., Hackethal, A., Kaesler, S., Loos, B., & Meyer, S. (2012). Is Unbiased Financial Advice to Retail Investors Sufficient? Answers from a Large Field Study. Review of Financial Studies, 25(4), 975–1032. https://doi.org/10.1093/RFS/HHR127 BhattacharyaU. HackethalA. KaeslerS. LoosB. MeyerS. 2012 Is Unbiased Financial Advice to Retail Investors Sufficient? Answers from a Large Field Study Review of Financial Studies 25 4 975 1032 https://doi.org/10.1093/RFS/HHR127 Search in Google Scholar

Bialkowski, J., Otten, R., Bialkowski, J., & Otten, R. (2011). Emerging Market Mutual Fund Performance: Evidence for Poland. The North American Journal of Economics and Finance, 22(2), 118–130. https://doi.org/10.1016/j.najef.2010.11.001 BialkowskiJ. OttenR. BialkowskiJ. OttenR. 2011 Emerging Market Mutual Fund Performance: Evidence for Poland The North American Journal of Economics and Finance 22 2 118 130 https://doi.org/10.1016/j.najef.2010.11.001 Search in Google Scholar

Bianchi, M. (2018). Financial Literacy and Portfolio Dynamics. Journal of Finance, 73(2), 831–859. https://doi.org/10.1111/jofi.12605 BianchiM. 2018 Financial Literacy and Portfolio Dynamics Journal of Finance 73 2 831 859 https://doi.org/10.1111/jofi.12605 Search in Google Scholar

Bóta, G., & Ormos, M. (2016). Is There a Local Advantage for Mutual Funds That Invest in Eastern Europe? Eastern European Economics, 54(1), 23–48. https://doi.org/10.1080/00128775.2015.1120161 BótaG. OrmosM. 2016 Is There a Local Advantage for Mutual Funds That Invest in Eastern Europe? Eastern European Economics 54 1 23 48 https://doi.org/10.1080/00128775.2015.1120161 Search in Google Scholar

Brown, S. J., & Goetzmann, W. N. (1995). Performance Persistence. Journal of Finance, 50(2), 679–698. https://doi.org/10.1111/j.1540-6261.1995.tb04800.x BrownS. J. GoetzmannW. N. 1995 Performance Persistence Journal of Finance 50 2 679 698 https://doi.org/10.1111/j.1540-6261.1995.tb04800.x Search in Google Scholar

Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. Journal of Finance, 52(1), 57–82. https://doi.org/10.1111/j.1540-6261.1997.tb03808.x CarhartM. M. 1997 On Persistence in Mutual Fund Performance Journal of Finance 52 1 57 82 https://doi.org/10.1111/j.1540-6261.1997.tb03808.x Search in Google Scholar

Chiang, W. C., Urban, T. L., & Baldridge, G. W. (1996). A Neural Network Approach to Mutual Fund Net Asset Value Forecasting. Omega, 24(2), 205–215. https://doi.org/10.1016/0305-0483(95)00059-3 ChiangW. C. UrbanT. L. BaldridgeG. W. 1996 A Neural Network Approach to Mutual Fund Net Asset Value Forecasting Omega 24 2 205 215 https://doi.org/10.1016/0305-0483(95)00059-3 Search in Google Scholar

Cremers, K. J. M., & Petajisto, A. (2009). How Active Is Your Fund Manager? A New Measure That Predicts Performance. Review of Financial Studies, 22(9), 3329–3365. https://doi.org/10.1093/rfs/hhp057 CremersK. J. M. PetajistoA. 2009 How Active Is Your Fund Manager? A New Measure That Predicts Performance Review of Financial Studies 22 9 3329 3365 https://doi.org/10.1093/rfs/hhp057 Search in Google Scholar

Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2008). UK Mutual Fund Performance: Skill or Luck? Journal of Empirical Finance, 15(4), 613–634. https://doi.org/10.1016/j.jempfin.2007.09.005 CuthbertsonK. NitzscheD. O’SullivanN. 2008 UK Mutual Fund Performance: Skill or Luck? Journal of Empirical Finance 15 4 613 634 https://doi.org/10.1016/j.jempfin.2007.09.005 Search in Google Scholar

Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2022). Mutual Fund Performance Persistence: Factor Models and Portfolio Aize. International Review of Financial Analysis, 81, 102133. https://doi.org/10.1016/J.IRFA.2022.102133 CuthbertsonK. NitzscheD. O’SullivanN. 2022 Mutual Fund Performance Persistence: Factor Models and Portfolio Aize International Review of Financial Analysis 81 102133 https://doi.org/10.1016/J.IRFA.2022.102133 Search in Google Scholar

Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2023). UK Mutual Funds: Performance Persistence and Portfolio Size. Journal of Asset Management, 24, 284–298. https://doi.org/10.1057/s41260-023-00310-7 CuthbertsonK. NitzscheD. O’SullivanN. 2023 UK Mutual Funds: Performance Persistence and Portfolio Size Journal of Asset Management 24 284 298 https://doi.org/10.1057/s41260-023-00310-7 Search in Google Scholar

Czekaj, J., & Grotowski, M. (2014). Krótkoterminowa persystencja wyników osiąganych przez fundusze akcyjne działające na polskim rynku kapitałowym [Short-term Persistence of the Results Achieved by Equity Funds Operating on the Polish Capital Market]. Ekonomista, 2014(4), 545–557. https://ekonomista.pte.pl/Krotkoterminowa-persystencja-wynikow-osiaganych-przez-fundusze-akcyjne-dzialajace,155694,0,1.html CzekajJ. GrotowskiM. 2014 Krótkoterminowa persystencja wyników osiąganych przez fundusze akcyjne działające na polskim rynku kapitałowym [Short-term Persistence of the Results Achieved by Equity Funds Operating on the Polish Capital Market] Ekonomista 2014 4 545 557 https://ekonomista.pte.pl/Krotkoterminowa-persystencja-wynikow-osiaganych-przez-fundusze-akcyjne-dzialajace,155694,0,1.html Search in Google Scholar

Das, S. R., Mishra, D., Parhi, P., & Debata, P. P. (2020). Mutual Fund Investment Method Using Recurrent Back Propagation Neural Network. Lecture Notes in Networks and Systems, 109, 330–337. https://doi.org/10.1007/978-981-15-2774-6_40 DasS. R. MishraD. ParhiP. DebataP. P. 2020 Mutual Fund Investment Method Using Recurrent Back Propagation Neural Network Lecture Notes in Networks and Systems 109 330 337 https://doi.org/10.1007/978-981-15-2774-6_40 Search in Google Scholar

DeMiguel, V., Gil-Bazo, J., Nogales, F. J., & Santos, A. A. P. (2023). Machine Learning and Fund Characteristics Help to Select Mutual Funds with Positive Alpha. Journal of Financial Economics, 150(3), 103737. https://doi.org/10.1016/J.JFINECO.2023.103737 DeMiguelV. Gil-BazoJ. NogalesF. J. SantosA. A. P. 2023 Machine Learning and Fund Characteristics Help to Select Mutual Funds with Positive Alpha Journal of Financial Economics 150 3 103737 https://doi.org/10.1016/J.JFINECO.2023.103737 Search in Google Scholar

Dumitrescu, A., & Gil-Bazo, J. (2018). Market Frictions, Investor Sophistication, and Persistence in Mutual Fund Performance. Journal of Financial Markets, 40, 40–59. https://doi.org/10.1016/j.finmar.2018.01.001 DumitrescuA. Gil-BazoJ. 2018 Market Frictions, Investor Sophistication, and Persistence in Mutual Fund Performance Journal of Financial Markets 40 40 59 https://doi.org/10.1016/j.finmar.2018.01.001 Search in Google Scholar

Elton, E. J., Gruber, M. J., & Blake, C. R. (1996). The Persistence of Risk-adjusted Mutual Fund Performance. Journal of Business, 69(2), 133–157. https://doi.org/10.1086/209685 EltonE. J. GruberM. J. BlakeC. R. 1996 The Persistence of Risk-adjusted Mutual Fund Performance Journal of Business 69 2 133 157 https://doi.org/10.1086/209685 Search in Google Scholar

Fama, E. F., & French, K. R. (2010). Luck Versus Skill in the Cross-section of Mutual Fund Returns. Journal of Finance, 65(5), 1915–1947. https://doi.org/10.1111/j.1540-6261.2010.01598.x FamaE. F. FrenchK. R. 2010 Luck Versus Skill in the Cross-section of Mutual Fund Returns Journal of Finance 65 5 1915 1947 https://doi.org/10.1111/j.1540-6261.2010.01598.x Search in Google Scholar

Ferreira, M. A., Keswani, A., Miguel, A. F., & Ramos, S. B. (2013). The Determinants of Mutual Fund Performance: A Cross-country Study. Review of Finance, 17(2), 483–525. https://doi.org/10.1093/rof/rfs013 FerreiraM. A. KeswaniA. MiguelA. F. RamosS. B. 2013 The Determinants of Mutual Fund Performance: A Cross-country Study Review of Finance 17 2 483 525 https://doi.org/10.1093/rof/rfs013 Search in Google Scholar

Filip, D. (2017). The Return Variability and Dispersion: Evidence from Mutual Funds in Post-Transition Countries. Financial Assets and Investing, 8(1), 19–39. https://doi.org/10.5817/FAI2017-1-2 FilipD. 2017 The Return Variability and Dispersion: Evidence from Mutual Funds in Post-Transition Countries Financial Assets and Investing 8 1 19 39 https://doi.org/10.5817/FAI2017-1-2 Search in Google Scholar

Filip, D., & Rogala, T. (2021). Analysis of Polish Mutual Funds Performance: A Markovian Approach. Statistics in Transition New Series, 22(1), 115–130. https://doi.org/10.21307/STATTRANS-2021-006 FilipD. RogalaT. 2021 Analysis of Polish Mutual Funds Performance: A Markovian Approach Statistics in Transition New Series 22 1 115 130 https://doi.org/10.21307/STATTRANS-2021-006 Search in Google Scholar

Foerster, S., Linnainmaa, J. T., Melzer, B. T., & Previtero, A. (2017). Retail Financial Advice: Does One Size Fit All? Journal of Finance, 72(4), 1441–1482. https://doi.org/10.1111/JOFI.12514 FoersterS. LinnainmaaJ. T. MelzerB. T. PreviteroA. 2017 Retail Financial Advice: Does One Size Fit All? Journal of Finance 72 4 1441 1482 https://doi.org/10.1111/JOFI.12514 Search in Google Scholar

Fraś, A. (2018). The Relation Between Management Fees and the Mutual Funds' Performance in Poland in 2015. Oeconomia Copernicana, 9(2), 245–259. https://doi.org/10.24136/OC.2018.013 FraśA. 2018 The Relation Between Management Fees and the Mutual Funds' Performance in Poland in 2015 Oeconomia Copernicana 9 2 245 259 https://doi.org/10.24136/OC.2018.013 Search in Google Scholar

Gandhmal, D. P., & Kumar, K. (2019). Systematic Analysis and Review of Stock Market Prediction Techniques. Computer Science Review, 34, 100190. https://doi.org/10.1016/j.cosrev.2019.08.001 GandhmalD. P. KumarK. 2019 Systematic Analysis and Review of Stock Market Prediction Techniques Computer Science Review 34 100190 https://doi.org/10.1016/j.cosrev.2019.08.001 Search in Google Scholar

Gil-Bazo, J., & Ruiz-Verdu, P. (2009). The Relation Between Price and Performance in the Mutual Fund Industry. Journal of Finance, 64(5), 2153–2183. https://doi.org/10.1111/j.1540-6261.2009.01497.x Gil-BazoJ. Ruiz-VerduP. 2009 The Relation Between Price and Performance in the Mutual Fund Industry Journal of Finance 64 5 2153 2183 https://doi.org/10.1111/j.1540-6261.2009.01497.x Search in Google Scholar

Glode, V. (2011). Why Mutual Funds “Underperform”. Journal of Financial Economics, 99(3), 546–559. https://doi.org/10.1016/j.jfineco.2010.10.008 GlodeV. 2011 Why Mutual Funds “Underperform” Journal of Financial Economics 99 3 546 559 https://doi.org/10.1016/j.jfineco.2010.10.008 Search in Google Scholar

Grinblatt, M., & Titman, S. (1989). Mutual Fund Performance: An Analysis of Quarterly Portfolio Holdings. The Journal of Business, 62(3), 393. https://doi.org/10.1086/296468 GrinblattM. TitmanS. 1989 Mutual Fund Performance: An Analysis of Quarterly Portfolio Holdings The Journal of Business 62 3 393 https://doi.org/10.1086/296468 Search in Google Scholar

Gruber, M. J. (1996). Another Puzzle: The Growth in Actively Managed Mutual Funds. Journal of Finance, 51(3), 783–810. https://doi.org/10.1111/j.1540-6261.1996.tb02707.x GruberM. J. 1996 Another Puzzle: The Growth in Actively Managed Mutual Funds Journal of Finance 51 3 783 810 https://doi.org/10.1111/j.1540-6261.1996.tb02707.x Search in Google Scholar

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. The Review of Financial Studies, 33(5), 2223–2273. https://doi.org/https://doi.org/10.1093/rfs/hhaa009 GuS. KellyB. XiuD. 2020 Empirical Asset Pricing via Machine Learning The Review of Financial Studies 33 5 2223 2273 https://doi.org/https://doi.org/10.1093/rfs/hhaa009 Search in Google Scholar

Han, S. Z., Huang, L. H., Zhou, Y. Y., & Liu, Z. L. (2018). Mixed Chaotic FOA with GRNN to Construction of a Mutual Fund Forecasting Model. Cognitive Systems Research, 52, 380–386. https://doi.org/10.1016/j.cogsys.2018.07.006 HanS. Z. HuangL. H. ZhouY. Y. LiuZ. L. 2018 Mixed Chaotic FOA with GRNN to Construction of a Mutual Fund Forecasting Model Cognitive Systems Research 52 380 386 https://doi.org/10.1016/j.cogsys.2018.07.006 Search in Google Scholar

Hendricks, D., Patel, J., & Zeckhauser, R. (1993). Hot Hands in Mutual Funds: Short-Run Persistence of Relative Performance, 1974-1988. Journal of Finance, 48(1), 93. https://doi.org/10.2307/2328883 HendricksD. PatelJ. ZeckhauserR. 1993 Hot Hands in Mutual Funds: Short-Run Persistence of Relative Performance, 1974-1988 Journal of Finance 48 1 93 https://doi.org/10.2307/2328883 Search in Google Scholar

Hwang, S., & Satchell, S. E. (2010). How Loss Averse are Investors in Financial Markets? Journal of Banking & Finance, 34(10), 2425–2438. https://ideas.repec.org/a/eee/jbfina/v34y2010i10p2425-2438.html HwangS. SatchellS. E. 2010 How Loss Averse are Investors in Financial Markets? Journal of Banking & Finance 34 10 2425 2438 https://ideas.repec.org/a/eee/jbfina/v34y2010i10p2425-2438.html Search in Google Scholar

Indro, D. C., Jiang, C. X., Patuwo, B. E., & Zhang, G. P. (1999). Predicting Mutual Fund Performance Using Artificial Neural Networks. Omega, 27(3), 373–380. https://doi.org/10.1016/S0305-0483(98)00048-6 IndroD. C. JiangC. X. PatuwoB. E. ZhangG. P. 1999 Predicting Mutual Fund Performance Using Artificial Neural Networks Omega 27 3 373 380 https://doi.org/10.1016/S0305-0483(98)00048-6 Search in Google Scholar

Investment Company Institute. (2024). 2024 Investment Company Fact Book. https://www.icifactbook.org/ Investment Company Institute 2024 2024 Investment Company Fact Book https://www.icifactbook.org/ Search in Google Scholar

Jensen, M. C. (1969). Risk, The Pricing of Capital Assets, and The Evaluation of Investment Portfolios. The Journal of Business, 42(2), 167–247. https://doi.org/10.1086/295182 JensenM. C. 1969 Risk, The Pricing of Capital Assets, and The Evaluation of Investment Portfolios The Journal of Business 42 2 167 247 https://doi.org/10.1086/295182 Search in Google Scholar

Jiang, J., Liao, L., Wang, Z., & Xiang, H. (2020). Financial Literacy and Retail Investors’ Financial Welfare: Evidence from Mutual Fund Investment Outcomes in China. Pacific Basin Finance Journal, 59, 101242. https://doi.org/10.1016/j.pacfin.2019.101242 JiangJ. LiaoL. WangZ. XiangH. 2020 Financial Literacy and Retail Investors’ Financial Welfare: Evidence from Mutual Fund Investment Outcomes in China Pacific Basin Finance Journal 59 101242 https://doi.org/10.1016/j.pacfin.2019.101242 Search in Google Scholar

Kacperczyk, M., Nieuwerburgh, S. Van, & Veldkamp, L. (2014). Time-Varying Fund Manager Skill. Journal of Finance, 69(4), 1455–1484. https://doi.org/10.1111/jofi.12084 KacperczykM. NieuwerburghS. Van VeldkampL. 2014 Time-Varying Fund Manager Skill Journal of Finance 69 4 1455 1484 https://doi.org/10.1111/jofi.12084 Search in Google Scholar

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–291. https://econpapers.repec.org/RePEc:ecm:emetrp:v:47:y:1979:i:2:p:263-91 KahnemanD. TverskyA. 1979 Prospect Theory: An Analysis of Decision under Risk Econometrica 47 2 263 291 https://econpapers.repec.org/RePEc:ecm:emetrp:v:47:y:1979:i:2:p:263-91 Search in Google Scholar

Kaniel, R., Lin, Z., Pelger, M., & Van Nieuwerburgh, S. (2023). Machine Learning the Skill of Mutual Fund Managers. Journal of Financial Economics, 150(1), 94–138. https://doi.org/10.1016/J.JFINECO.2023.07.004 KanielR. LinZ. PelgerM. Van NieuwerburghS. 2023 Machine Learning the Skill of Mutual Fund Managers Journal of Financial Economics 150 1 94 138 https://doi.org/10.1016/J.JFINECO.2023.07.004 Search in Google Scholar

Kosowski, R. (2011). Do Mutual Funds Perform When It Matters Most to Investors? US Mutual Fund Performance and Risk in Recessions and Expansions. Quarterly Journal of Finance, 1(3), 607–664. https://doi.org/10.1142/S2010139211000146 KosowskiR. 2011 Do Mutual Funds Perform When It Matters Most to Investors? US Mutual Fund Performance and Risk in Recessions and Expansions Quarterly Journal of Finance 1 3 607 664 https://doi.org/10.1142/S2010139211000146 Search in Google Scholar

Li, B., & Rossi, A. G. (2020). Selecting Mutual Funds from the Stocks They Hold: A Machine Learning Approach. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3737667 LiB. RossiA. G. 2020 Selecting Mutual Funds from the Stocks They Hold: A Machine Learning Approach SSRN Electronic Journal https://doi.org/10.2139/SSRN.3737667 Search in Google Scholar

Lin, H. Sen, Chen, M. L., Tong, C. C., & Dai, J. W. (2007). Using Grey and RBFNN to Predict the Net Asset Value of Single Nation Equity Funds: A Case Study of Taiwan, US, and Japan. Proceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services, GSIS 2007, 892–897. https://doi.org/10.1109/GSIS.2007.4443402 LinH. Sen ChenM. L. TongC. C. DaiJ. W. 2007 Using Grey and RBFNN to Predict the Net Asset Value of Single Nation Equity Funds: A Case Study of Taiwan, US, and Japan Proceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services, GSIS 2007 892 897 https://doi.org/10.1109/GSIS.2007.4443402 Search in Google Scholar

Linnainmaa, J. T., Melzer, B. T., & Previtero, A. (2021). The Misguided Beliefs of Financial Advisors. Journal of Finance, 76(2), 587–621. https://doi.org/10.1111/jofi.12995 LinnainmaaJ. T. MelzerB. T. PreviteroA. 2021 The Misguided Beliefs of Financial Advisors Journal of Finance 76 2 587 621 https://doi.org/10.1111/jofi.12995 Search in Google Scholar

Miziołek, T., & Trzebiński, A. (2018). Rynek funduszy inwestycyjnych w Polsce [The Investment Fund Market in Poland]. CeDeWu MiziołekT. TrzebińskiA. 2018 Rynek funduszy inwestycyjnych w Polsce [The Investment Fund Market in Poland] CeDeWu Search in Google Scholar

Narula, A., Jha, C. B., & Panda, G. (2015). Development and Performance Evaluation of Three Novel Prediction Models for Mutual Fund NAV Prediction. Annual Research Journal of Symbiosis Centre for Management Studies, 3, 227–238. NarulaA. JhaC. B. PandaG. 2015 Development and Performance Evaluation of Three Novel Prediction Models for Mutual Fund NAV Prediction Annual Research Journal of Symbiosis Centre for Management Studies 3 227 238 Search in Google Scholar

Olah, C. (2015). Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/ OlahC. 2015 Understanding LSTM Networks https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Search in Google Scholar

Pan, W. T., Han, S. Z., Yang, H. L., & Chen, X. Y. (2019). Prediction of Mutual Fund Net Value Based on Data Mining Model. Cluster Computing, 22, 9455–9460. https://doi.org/10.1007/s10586-018-2272-2 PanW. T. HanS. Z. YangH. L. ChenX. Y. 2019 Prediction of Mutual Fund Net Value Based on Data Mining Model Cluster Computing 22 9455 9460 https://doi.org/10.1007/s10586-018-2272-2 Search in Google Scholar

Perez, K. (2012). Persystencja stóp zwrotu polskich funduszy inwestycyjnych [Persistence of Returns of Polish Investment Funds]. Finanse: Czasopismo Komitetu Nauk o Finansach PAN, nr 1(5), 81–113. PerezK. 2012 Persystencja stóp zwrotu polskich funduszy inwestycyjnych [Persistence of Returns of Polish Investment Funds] Finanse: Czasopismo Komitetu Nauk o Finansach PAN nr 1 5 81 113 Search in Google Scholar

Perez, K. (2014). Polish Absolute Return Funds and Stock Funds. Short and Long Term Performance Comparison. Folia Oeconomica Stetinensia, 14(2), 179–197. https://doi.org/10.1515/FOLI-2015-0016 PerezK. 2014 Polish Absolute Return Funds and Stock Funds. Short and Long Term Performance Comparison Folia Oeconomica Stetinensia 14 2 179 197 https://doi.org/10.1515/FOLI-2015-0016 Search in Google Scholar

Perez, K., & Szczyt, M. (2021). Classification of Open-End Investment Funds Using Artificial Neural Networks. The Case of Polish Equity Funds. Central European Economic Journal, 8(55), 269–284. https://doi.org/10.2478/CEEJ-2021-0020 PerezK. SzczytM. 2021 Classification of Open-End Investment Funds Using Artificial Neural Networks. The Case of Polish Equity Funds Central European Economic Journal 8 55 269 284 https://doi.org/10.2478/CEEJ-2021-0020 Search in Google Scholar

Perez, K., & Szymczyk, Ł. (2022). Actual Rate of the Management Fee in Mutual Funds of Different Styles. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(4), 969–1014. https://doi.org/10.24136/EQ.2022.033 PerezK. SzymczykŁ. 2022 Actual Rate of the Management Fee in Mutual Funds of Different Styles Equilibrium. Quarterly Journal of Economics and Economic Policy 17 4 969 1014 https://doi.org/10.24136/EQ.2022.033 Search in Google Scholar

Priyadarshini, E. (2015). A Comparative Analysis of Prediction Using Artificial Neural Network and Autoregressive Integrated Moving Average. ARPN Journal of Engineering and Applied Science, 10(7), 3078–3081. PriyadarshiniE. 2015 A Comparative Analysis of Prediction Using Artificial Neural Network and Autoregressive Integrated Moving Average ARPN Journal of Engineering and Applied Science 10 7 3078 3081 Search in Google Scholar

Priyadarshini, E., & Babu, A. C. (2012). A Comparative Analysis for Forecasting the NAV’s of Indian Mutual Fund using Multiple Regression Analysis and Artificial Neural Networks. International Journal of Trade, Economics and Finance, 3(5), 347–350. https://doi.org/10.7763/ijtef.2012.v3.225 PriyadarshiniE. BabuA. C. 2012 A Comparative Analysis for Forecasting the NAV’s of Indian Mutual Fund using Multiple Regression Analysis and Artificial Neural Networks International Journal of Trade, Economics and Finance 3 5 347 350 https://doi.org/10.7763/ijtef.2012.v3.225 Search in Google Scholar

Ray, P., & Vina, V. (2005). Neural Network Models for Forecasting Mutual Fund Net Asset Value. 8th Capital Markets Conference, Indian Institute of Capital Markets Paper, 1–18. https://doi.org/10.2139/SSRN.872269 RayP. VinaV. 2005 Neural Network Models for Forecasting Mutual Fund Net Asset Value 8th Capital Markets Conference, Indian Institute of Capital Markets Paper 1 18 https://doi.org/10.2139/SSRN.872269 Search in Google Scholar

Rout, M., Koudjonou, K. M., & Satapathy, S. C. (2020). Analysis of Net Asset Value Prediction Using Low Complexity Neural Network with Various Expansion Techniques. Evolutionary Intelligence, 0123456789. https://doi.org/10.1007/s12065-020-00365-0 RoutM. KoudjonouK. M. SatapathyS. C. 2020 Analysis of Net Asset Value Prediction Using Low Complexity Neural Network with Various Expansion Techniques Evolutionary Intelligence 0123456789 https://doi.org/10.1007/s12065-020-00365-0 Search in Google Scholar

Wang, K., & Huang, S. (2010). Using Fast Adaptive Neural Network Classifier for Mutual Fund Performance Evaluation. Expert Systems with Applications, 37(8), 6007–6011. https://doi.org/10.1016/j.eswa.2010.02.003 WangK. HuangS. 2010 Using Fast Adaptive Neural Network Classifier for Mutual Fund Performance Evaluation Expert Systems with Applications 37 8 6007 6011 https://doi.org/10.1016/j.eswa.2010.02.003 Search in Google Scholar

Xie, Y., Hwang, S., & Pantelous, A. A. (2018). Loss Aversion Around the World: Empirical Evidence from Pension Funds. Journal of Banking and Finance, 88, 52–62. https://doi.org/10.1016/j.jbankfin.2017.11.007 XieY. HwangS. PantelousA. A. 2018 Loss Aversion Around the World: Empirical Evidence from Pension Funds Journal of Banking and Finance 88 52 62 https://doi.org/10.1016/j.jbankfin.2017.11.007 Search in Google Scholar

Yan, H., Liu, W., Liu, X., Kong, H., & Lv, C. (2010). Predicting Net Asset Value of Investment Fund Based on BP Neural Network. ICCASM 2010 - 2010 International Conference on Computer Application and System Modeling, Proceedings, 10. https://doi.org/10.1109/ICCASM.2010.5622625 YanH. LiuW. LiuX. KongH. LvC. 2010 Predicting Net Asset Value of Investment Fund Based on BP Neural Network ICCASM 2010 - 2010 International Conference on Computer Application and System Modeling, Proceedings 10 https://doi.org/10.1109/ICCASM.2010.5622625 Search in Google Scholar

Zamojska, A. (2012). Efektywność funduszy inwestycyjnych w Polsce. Studium teoretyczno-empiryczne [The Effectiveness of Investment Funds in Poland: A Theoretical-Empirical Study]. C.H. Beck ZamojskaA. 2012 Efektywność funduszy inwestycyjnych w Polsce. Studium teoretyczno-empiryczne [The Effectiveness of Investment Funds in Poland: A Theoretical-Empirical Study] C.H. Beck Search in Google Scholar