This work is licensed under the Creative Commons Attribution 4.0 International License.
Anish, C. M., & Majhi, B. (2016). An Ensemble Model for Net Asset Value Prediction. 2015 IEEE Power, Communication and Information Technology Conference, PCITC 2015 - Proceedings, 392–396. https://doi.org/10.1109/PCITC.2015.7438197AnishC. M.MajhiB.2016An Ensemble Model for Net Asset Value Prediction2015 IEEE Power, Communication and Information Technology Conference, PCITC 2015 - Proceedings392396https://doi.org/10.1109/PCITC.2015.7438197Search in Google Scholar
Anish, C. M., Majhi, B., & Majhi, R. (2018). A Novel Hybrid Model Using RBF and PSO for Net Asset Value Prediction. In S. Dash, B. Tripathy, & A. Rahman (Eds.), Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms (pp. 54–72). IGI Global. https://doi.org/10.4018/978-1-5225-2857-9.CH003AnishC. M.MajhiB.MajhiR.2018A Novel Hybrid Model Using RBF and PSO for Net Asset Value PredictionInDashS.TripathyB.RahmanA.(Eds.),Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms5472IGI Globalhttps://doi.org/10.4018/978-1-5225-2857-9.CH003Search in Google Scholar
Barras, L., Scaillet, O., & Wermers, R. (2010). False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas. Journal of Finance, 65(1), 179–216. https://doi.org/10.1111/j.1540-6261.2009.01527.xBarrasL.ScailletO.WermersR.2010False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated AlphasJournal of Finance651179216https://doi.org/10.1111/j.1540-6261.2009.01527.xSearch in Google Scholar
Basu, A. K., & Huang-Jones, J. (2015). The Performance of Diversified Emerging Market Equity Funds. Journal of International Financial Markets, Institutions and Money, 35, 116–131. https://doi.org/10.1016/j.intfin.2015.01.002BasuA. K.Huang-JonesJ.2015The Performance of Diversified Emerging Market Equity FundsJournal of International Financial Markets, Institutions and Money35116131https://doi.org/10.1016/j.intfin.2015.01.002Search in Google Scholar
Berk, J. B., & Green, R. C. (2004). Mutual Fund Flows and Performance in Rational Markets. Journal of Political Economy, 112(6), 1269–1295. https://doi.org/10.1086/424739BerkJ. B.GreenR. C.2004Mutual Fund Flows and Performance in Rational MarketsJournal of Political Economy112612691295https://doi.org/10.1086/424739Search in Google Scholar
Bhattacharya, U., Hackethal, A., Kaesler, S., Loos, B., & Meyer, S. (2012). Is Unbiased Financial Advice to Retail Investors Sufficient? Answers from a Large Field Study. Review of Financial Studies, 25(4), 975–1032. https://doi.org/10.1093/RFS/HHR127BhattacharyaU.HackethalA.KaeslerS.LoosB.MeyerS.2012Is Unbiased Financial Advice to Retail Investors Sufficient? Answers from a Large Field StudyReview of Financial Studies2549751032https://doi.org/10.1093/RFS/HHR127Search in Google Scholar
Bialkowski, J., Otten, R., Bialkowski, J., & Otten, R. (2011). Emerging Market Mutual Fund Performance: Evidence for Poland. The North American Journal of Economics and Finance, 22(2), 118–130. https://doi.org/10.1016/j.najef.2010.11.001BialkowskiJ.OttenR.BialkowskiJ.OttenR.2011Emerging Market Mutual Fund Performance: Evidence for PolandThe North American Journal of Economics and Finance222118130https://doi.org/10.1016/j.najef.2010.11.001Search in Google Scholar
Bianchi, M. (2018). Financial Literacy and Portfolio Dynamics. Journal of Finance, 73(2), 831–859. https://doi.org/10.1111/jofi.12605BianchiM.2018Financial Literacy and Portfolio DynamicsJournal of Finance732831859https://doi.org/10.1111/jofi.12605Search in Google Scholar
Bóta, G., & Ormos, M. (2016). Is There a Local Advantage for Mutual Funds That Invest in Eastern Europe? Eastern European Economics, 54(1), 23–48. https://doi.org/10.1080/00128775.2015.1120161BótaG.OrmosM.2016Is There a Local Advantage for Mutual Funds That Invest in Eastern Europe?Eastern European Economics5412348https://doi.org/10.1080/00128775.2015.1120161Search in Google Scholar
Brown, S. J., & Goetzmann, W. N. (1995). Performance Persistence. Journal of Finance, 50(2), 679–698. https://doi.org/10.1111/j.1540-6261.1995.tb04800.xBrownS. J.GoetzmannW. N.1995Performance PersistenceJournal of Finance502679698https://doi.org/10.1111/j.1540-6261.1995.tb04800.xSearch in Google Scholar
Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. Journal of Finance, 52(1), 57–82. https://doi.org/10.1111/j.1540-6261.1997.tb03808.xCarhartM. M.1997On Persistence in Mutual Fund PerformanceJournal of Finance5215782https://doi.org/10.1111/j.1540-6261.1997.tb03808.xSearch in Google Scholar
Chiang, W. C., Urban, T. L., & Baldridge, G. W. (1996). A Neural Network Approach to Mutual Fund Net Asset Value Forecasting. Omega, 24(2), 205–215. https://doi.org/10.1016/0305-0483(95)00059-3ChiangW. C.UrbanT. L.BaldridgeG. W.1996A Neural Network Approach to Mutual Fund Net Asset Value ForecastingOmega242205215https://doi.org/10.1016/0305-0483(95)00059-3Search in Google Scholar
Cremers, K. J. M., & Petajisto, A. (2009). How Active Is Your Fund Manager? A New Measure That Predicts Performance. Review of Financial Studies, 22(9), 3329–3365. https://doi.org/10.1093/rfs/hhp057CremersK. J. M.PetajistoA.2009How Active Is Your Fund Manager? A New Measure That Predicts PerformanceReview of Financial Studies22933293365https://doi.org/10.1093/rfs/hhp057Search in Google Scholar
Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2008). UK Mutual Fund Performance: Skill or Luck? Journal of Empirical Finance, 15(4), 613–634. https://doi.org/10.1016/j.jempfin.2007.09.005CuthbertsonK.NitzscheD.O’SullivanN.2008UK Mutual Fund Performance: Skill or Luck?Journal of Empirical Finance154613634https://doi.org/10.1016/j.jempfin.2007.09.005Search in Google Scholar
Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2022). Mutual Fund Performance Persistence: Factor Models and Portfolio Aize. International Review of Financial Analysis, 81, 102133. https://doi.org/10.1016/J.IRFA.2022.102133CuthbertsonK.NitzscheD.O’SullivanN.2022Mutual Fund Performance Persistence: Factor Models and Portfolio AizeInternational Review of Financial Analysis81102133https://doi.org/10.1016/J.IRFA.2022.102133Search in Google Scholar
Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2023). UK Mutual Funds: Performance Persistence and Portfolio Size. Journal of Asset Management, 24, 284–298. https://doi.org/10.1057/s41260-023-00310-7CuthbertsonK.NitzscheD.O’SullivanN.2023UK Mutual Funds: Performance Persistence and Portfolio SizeJournal of Asset Management24284298https://doi.org/10.1057/s41260-023-00310-7Search in Google Scholar
Czekaj, J., & Grotowski, M. (2014). Krótkoterminowa persystencja wyników osiąganych przez fundusze akcyjne działające na polskim rynku kapitałowym [Short-term Persistence of the Results Achieved by Equity Funds Operating on the Polish Capital Market]. Ekonomista, 2014(4), 545–557. https://ekonomista.pte.pl/Krotkoterminowa-persystencja-wynikow-osiaganych-przez-fundusze-akcyjne-dzialajace,155694,0,1.htmlCzekajJ.GrotowskiM.2014Krótkoterminowa persystencja wyników osiąganych przez fundusze akcyjne działające na polskim rynku kapitałowym [Short-term Persistence of the Results Achieved by Equity Funds Operating on the Polish Capital Market]Ekonomista20144545557https://ekonomista.pte.pl/Krotkoterminowa-persystencja-wynikow-osiaganych-przez-fundusze-akcyjne-dzialajace,155694,0,1.htmlSearch in Google Scholar
Das, S. R., Mishra, D., Parhi, P., & Debata, P. P. (2020). Mutual Fund Investment Method Using Recurrent Back Propagation Neural Network. Lecture Notes in Networks and Systems, 109, 330–337. https://doi.org/10.1007/978-981-15-2774-6_40DasS. R.MishraD.ParhiP.DebataP. P.2020Mutual Fund Investment Method Using Recurrent Back Propagation Neural NetworkLecture Notes in Networks and Systems109330337https://doi.org/10.1007/978-981-15-2774-6_40Search in Google Scholar
DeMiguel, V., Gil-Bazo, J., Nogales, F. J., & Santos, A. A. P. (2023). Machine Learning and Fund Characteristics Help to Select Mutual Funds with Positive Alpha. Journal of Financial Economics, 150(3), 103737. https://doi.org/10.1016/J.JFINECO.2023.103737DeMiguelV.Gil-BazoJ.NogalesF. J.SantosA. A. P.2023Machine Learning and Fund Characteristics Help to Select Mutual Funds with Positive AlphaJournal of Financial Economics1503103737https://doi.org/10.1016/J.JFINECO.2023.103737Search in Google Scholar
Dumitrescu, A., & Gil-Bazo, J. (2018). Market Frictions, Investor Sophistication, and Persistence in Mutual Fund Performance. Journal of Financial Markets, 40, 40–59. https://doi.org/10.1016/j.finmar.2018.01.001DumitrescuA.Gil-BazoJ.2018Market Frictions, Investor Sophistication, and Persistence in Mutual Fund PerformanceJournal of Financial Markets404059https://doi.org/10.1016/j.finmar.2018.01.001Search in Google Scholar
Elton, E. J., Gruber, M. J., & Blake, C. R. (1996). The Persistence of Risk-adjusted Mutual Fund Performance. Journal of Business, 69(2), 133–157. https://doi.org/10.1086/209685EltonE. J.GruberM. J.BlakeC. R.1996The Persistence of Risk-adjusted Mutual Fund PerformanceJournal of Business692133157https://doi.org/10.1086/209685Search in Google Scholar
Fama, E. F., & French, K. R. (2010). Luck Versus Skill in the Cross-section of Mutual Fund Returns. Journal of Finance, 65(5), 1915–1947. https://doi.org/10.1111/j.1540-6261.2010.01598.xFamaE. F.FrenchK. R.2010Luck Versus Skill in the Cross-section of Mutual Fund ReturnsJournal of Finance65519151947https://doi.org/10.1111/j.1540-6261.2010.01598.xSearch in Google Scholar
Ferreira, M. A., Keswani, A., Miguel, A. F., & Ramos, S. B. (2013). The Determinants of Mutual Fund Performance: A Cross-country Study. Review of Finance, 17(2), 483–525. https://doi.org/10.1093/rof/rfs013FerreiraM. A.KeswaniA.MiguelA. F.RamosS. B.2013The Determinants of Mutual Fund Performance: A Cross-country StudyReview of Finance172483525https://doi.org/10.1093/rof/rfs013Search in Google Scholar
Filip, D. (2017). The Return Variability and Dispersion: Evidence from Mutual Funds in Post-Transition Countries. Financial Assets and Investing, 8(1), 19–39. https://doi.org/10.5817/FAI2017-1-2FilipD.2017The Return Variability and Dispersion: Evidence from Mutual Funds in Post-Transition CountriesFinancial Assets and Investing811939https://doi.org/10.5817/FAI2017-1-2Search in Google Scholar
Filip, D., & Rogala, T. (2021). Analysis of Polish Mutual Funds Performance: A Markovian Approach. Statistics in Transition New Series, 22(1), 115–130. https://doi.org/10.21307/STATTRANS-2021-006FilipD.RogalaT.2021Analysis of Polish Mutual Funds Performance: A Markovian ApproachStatistics in Transition New Series221115130https://doi.org/10.21307/STATTRANS-2021-006Search in Google Scholar
Foerster, S., Linnainmaa, J. T., Melzer, B. T., & Previtero, A. (2017). Retail Financial Advice: Does One Size Fit All? Journal of Finance, 72(4), 1441–1482. https://doi.org/10.1111/JOFI.12514FoersterS.LinnainmaaJ. T.MelzerB. T.PreviteroA.2017Retail Financial Advice: Does One Size Fit All?Journal of Finance72414411482https://doi.org/10.1111/JOFI.12514Search in Google Scholar
Fraś, A. (2018). The Relation Between Management Fees and the Mutual Funds' Performance in Poland in 2015. Oeconomia Copernicana, 9(2), 245–259. https://doi.org/10.24136/OC.2018.013FraśA.2018The Relation Between Management Fees and the Mutual Funds' Performance in Poland in 2015Oeconomia Copernicana92245259https://doi.org/10.24136/OC.2018.013Search in Google Scholar
Gandhmal, D. P., & Kumar, K. (2019). Systematic Analysis and Review of Stock Market Prediction Techniques. Computer Science Review, 34, 100190. https://doi.org/10.1016/j.cosrev.2019.08.001GandhmalD. P.KumarK.2019Systematic Analysis and Review of Stock Market Prediction TechniquesComputer Science Review34100190https://doi.org/10.1016/j.cosrev.2019.08.001Search in Google Scholar
Gil-Bazo, J., & Ruiz-Verdu, P. (2009). The Relation Between Price and Performance in the Mutual Fund Industry. Journal of Finance, 64(5), 2153–2183. https://doi.org/10.1111/j.1540-6261.2009.01497.xGil-BazoJ.Ruiz-VerduP.2009The Relation Between Price and Performance in the Mutual Fund IndustryJournal of Finance64521532183https://doi.org/10.1111/j.1540-6261.2009.01497.xSearch in Google Scholar
Glode, V. (2011). Why Mutual Funds “Underperform”. Journal of Financial Economics, 99(3), 546–559. https://doi.org/10.1016/j.jfineco.2010.10.008GlodeV.2011Why Mutual Funds “Underperform”Journal of Financial Economics993546559https://doi.org/10.1016/j.jfineco.2010.10.008Search in Google Scholar
Grinblatt, M., & Titman, S. (1989). Mutual Fund Performance: An Analysis of Quarterly Portfolio Holdings. The Journal of Business, 62(3), 393. https://doi.org/10.1086/296468GrinblattM.TitmanS.1989Mutual Fund Performance: An Analysis of Quarterly Portfolio HoldingsThe Journal of Business623393https://doi.org/10.1086/296468Search in Google Scholar
Gruber, M. J. (1996). Another Puzzle: The Growth in Actively Managed Mutual Funds. Journal of Finance, 51(3), 783–810. https://doi.org/10.1111/j.1540-6261.1996.tb02707.xGruberM. J.1996Another Puzzle: The Growth in Actively Managed Mutual FundsJournal of Finance513783810https://doi.org/10.1111/j.1540-6261.1996.tb02707.xSearch in Google Scholar
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. The Review of Financial Studies, 33(5), 2223–2273. https://doi.org/https://doi.org/10.1093/rfs/hhaa009GuS.KellyB.XiuD.2020Empirical Asset Pricing via Machine LearningThe Review of Financial Studies33522232273https://doi.org/https://doi.org/10.1093/rfs/hhaa009Search in Google Scholar
Han, S. Z., Huang, L. H., Zhou, Y. Y., & Liu, Z. L. (2018). Mixed Chaotic FOA with GRNN to Construction of a Mutual Fund Forecasting Model. Cognitive Systems Research, 52, 380–386. https://doi.org/10.1016/j.cogsys.2018.07.006HanS. Z.HuangL. H.ZhouY. Y.LiuZ. L.2018Mixed Chaotic FOA with GRNN to Construction of a Mutual Fund Forecasting ModelCognitive Systems Research52380386https://doi.org/10.1016/j.cogsys.2018.07.006Search in Google Scholar
Hendricks, D., Patel, J., & Zeckhauser, R. (1993). Hot Hands in Mutual Funds: Short-Run Persistence of Relative Performance, 1974-1988. Journal of Finance, 48(1), 93. https://doi.org/10.2307/2328883HendricksD.PatelJ.ZeckhauserR.1993Hot Hands in Mutual Funds: Short-Run Persistence of Relative Performance, 1974-1988Journal of Finance48193https://doi.org/10.2307/2328883Search in Google Scholar
Hwang, S., & Satchell, S. E. (2010). How Loss Averse are Investors in Financial Markets? Journal of Banking & Finance, 34(10), 2425–2438. https://ideas.repec.org/a/eee/jbfina/v34y2010i10p2425-2438.htmlHwangS.SatchellS. E.2010How Loss Averse are Investors in Financial Markets?Journal of Banking & Finance341024252438https://ideas.repec.org/a/eee/jbfina/v34y2010i10p2425-2438.htmlSearch in Google Scholar
Indro, D. C., Jiang, C. X., Patuwo, B. E., & Zhang, G. P. (1999). Predicting Mutual Fund Performance Using Artificial Neural Networks. Omega, 27(3), 373–380. https://doi.org/10.1016/S0305-0483(98)00048-6IndroD. C.JiangC. X.PatuwoB. E.ZhangG. P.1999Predicting Mutual Fund Performance Using Artificial Neural NetworksOmega273373380https://doi.org/10.1016/S0305-0483(98)00048-6Search in Google Scholar
Investment Company Institute. (2024). 2024 Investment Company Fact Book. https://www.icifactbook.org/Investment Company Institute20242024 Investment Company Fact Bookhttps://www.icifactbook.org/Search in Google Scholar
Jensen, M. C. (1969). Risk, The Pricing of Capital Assets, and The Evaluation of Investment Portfolios. The Journal of Business, 42(2), 167–247. https://doi.org/10.1086/295182JensenM. C.1969Risk, The Pricing of Capital Assets, and The Evaluation of Investment PortfoliosThe Journal of Business422167247https://doi.org/10.1086/295182Search in Google Scholar
Jiang, J., Liao, L., Wang, Z., & Xiang, H. (2020). Financial Literacy and Retail Investors’ Financial Welfare: Evidence from Mutual Fund Investment Outcomes in China. Pacific Basin Finance Journal, 59, 101242. https://doi.org/10.1016/j.pacfin.2019.101242JiangJ.LiaoL.WangZ.XiangH.2020Financial Literacy and Retail Investors’ Financial Welfare: Evidence from Mutual Fund Investment Outcomes in ChinaPacific Basin Finance Journal59101242https://doi.org/10.1016/j.pacfin.2019.101242Search in Google Scholar
Kacperczyk, M., Nieuwerburgh, S. Van, & Veldkamp, L. (2014). Time-Varying Fund Manager Skill. Journal of Finance, 69(4), 1455–1484. https://doi.org/10.1111/jofi.12084KacperczykM.NieuwerburghS. VanVeldkampL.2014Time-Varying Fund Manager SkillJournal of Finance69414551484https://doi.org/10.1111/jofi.12084Search in Google Scholar
Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–291. https://econpapers.repec.org/RePEc:ecm:emetrp:v:47:y:1979:i:2:p:263-91KahnemanD.TverskyA.1979Prospect Theory: An Analysis of Decision under RiskEconometrica472263291https://econpapers.repec.org/RePEc:ecm:emetrp:v:47:y:1979:i:2:p:263-91Search in Google Scholar
Kaniel, R., Lin, Z., Pelger, M., & Van Nieuwerburgh, S. (2023). Machine Learning the Skill of Mutual Fund Managers. Journal of Financial Economics, 150(1), 94–138. https://doi.org/10.1016/J.JFINECO.2023.07.004KanielR.LinZ.PelgerM.Van NieuwerburghS.2023Machine Learning the Skill of Mutual Fund ManagersJournal of Financial Economics150194138https://doi.org/10.1016/J.JFINECO.2023.07.004Search in Google Scholar
Kosowski, R. (2011). Do Mutual Funds Perform When It Matters Most to Investors? US Mutual Fund Performance and Risk in Recessions and Expansions. Quarterly Journal of Finance, 1(3), 607–664. https://doi.org/10.1142/S2010139211000146KosowskiR.2011Do Mutual Funds Perform When It Matters Most to Investors? US Mutual Fund Performance and Risk in Recessions and ExpansionsQuarterly Journal of Finance13607664https://doi.org/10.1142/S2010139211000146Search in Google Scholar
Li, B., & Rossi, A. G. (2020). Selecting Mutual Funds from the Stocks They Hold: A Machine Learning Approach. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3737667LiB.RossiA. G.2020Selecting Mutual Funds from the Stocks They Hold: A Machine Learning ApproachSSRN Electronic Journalhttps://doi.org/10.2139/SSRN.3737667Search in Google Scholar
Lin, H. Sen, Chen, M. L., Tong, C. C., & Dai, J. W. (2007). Using Grey and RBFNN to Predict the Net Asset Value of Single Nation Equity Funds: A Case Study of Taiwan, US, and Japan. Proceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services, GSIS 2007, 892–897. https://doi.org/10.1109/GSIS.2007.4443402LinH. SenChenM. L.TongC. C.DaiJ. W.2007Using Grey and RBFNN to Predict the Net Asset Value of Single Nation Equity Funds: A Case Study of Taiwan, US, and JapanProceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services, GSIS 2007892897https://doi.org/10.1109/GSIS.2007.4443402Search in Google Scholar
Linnainmaa, J. T., Melzer, B. T., & Previtero, A. (2021). The Misguided Beliefs of Financial Advisors. Journal of Finance, 76(2), 587–621. https://doi.org/10.1111/jofi.12995LinnainmaaJ. T.MelzerB. T.PreviteroA.2021The Misguided Beliefs of Financial AdvisorsJournal of Finance762587621https://doi.org/10.1111/jofi.12995Search in Google Scholar
Miziołek, T., & Trzebiński, A. (2018). Rynek funduszy inwestycyjnych w Polsce [The Investment Fund Market in Poland]. CeDeWuMiziołekT.TrzebińskiA.2018Rynek funduszy inwestycyjnych w Polsce [The Investment Fund Market in Poland]CeDeWuSearch in Google Scholar
Narula, A., Jha, C. B., & Panda, G. (2015). Development and Performance Evaluation of Three Novel Prediction Models for Mutual Fund NAV Prediction. Annual Research Journal of Symbiosis Centre for Management Studies, 3, 227–238.NarulaA.JhaC. B.PandaG.2015Development and Performance Evaluation of Three Novel Prediction Models for Mutual Fund NAV PredictionAnnual Research Journal of Symbiosis Centre for Management Studies3227238Search in Google Scholar
Olah, C. (2015). Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/OlahC.2015Understanding LSTM Networkshttps://colah.github.io/posts/2015-08-Understanding-LSTMs/Search in Google Scholar
Pan, W. T., Han, S. Z., Yang, H. L., & Chen, X. Y. (2019). Prediction of Mutual Fund Net Value Based on Data Mining Model. Cluster Computing, 22, 9455–9460. https://doi.org/10.1007/s10586-018-2272-2PanW. T.HanS. Z.YangH. L.ChenX. Y.2019Prediction of Mutual Fund Net Value Based on Data Mining ModelCluster Computing2294559460https://doi.org/10.1007/s10586-018-2272-2Search in Google Scholar
Perez, K. (2012). Persystencja stóp zwrotu polskich funduszy inwestycyjnych [Persistence of Returns of Polish Investment Funds]. Finanse: Czasopismo Komitetu Nauk o Finansach PAN, nr 1(5), 81–113.PerezK.2012Persystencja stóp zwrotu polskich funduszy inwestycyjnych [Persistence of Returns of Polish Investment Funds]Finanse: Czasopismo Komitetu Nauk o Finansach PANnr 1581113Search in Google Scholar
Perez, K. (2014). Polish Absolute Return Funds and Stock Funds. Short and Long Term Performance Comparison. Folia Oeconomica Stetinensia, 14(2), 179–197. https://doi.org/10.1515/FOLI-2015-0016PerezK.2014Polish Absolute Return Funds and Stock Funds. Short and Long Term Performance ComparisonFolia Oeconomica Stetinensia142179197https://doi.org/10.1515/FOLI-2015-0016Search in Google Scholar
Perez, K., & Szczyt, M. (2021). Classification of Open-End Investment Funds Using Artificial Neural Networks. The Case of Polish Equity Funds. Central European Economic Journal, 8(55), 269–284. https://doi.org/10.2478/CEEJ-2021-0020PerezK.SzczytM.2021Classification of Open-End Investment Funds Using Artificial Neural Networks. The Case of Polish Equity FundsCentral European Economic Journal855269284https://doi.org/10.2478/CEEJ-2021-0020Search in Google Scholar
Perez, K., & Szymczyk, Ł. (2022). Actual Rate of the Management Fee in Mutual Funds of Different Styles. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(4), 969–1014. https://doi.org/10.24136/EQ.2022.033PerezK.SzymczykŁ.2022Actual Rate of the Management Fee in Mutual Funds of Different StylesEquilibrium. Quarterly Journal of Economics and Economic Policy1749691014https://doi.org/10.24136/EQ.2022.033Search in Google Scholar
Priyadarshini, E. (2015). A Comparative Analysis of Prediction Using Artificial Neural Network and Autoregressive Integrated Moving Average. ARPN Journal of Engineering and Applied Science, 10(7), 3078–3081.PriyadarshiniE.2015A Comparative Analysis of Prediction Using Artificial Neural Network and Autoregressive Integrated Moving AverageARPN Journal of Engineering and Applied Science10730783081Search in Google Scholar
Priyadarshini, E., & Babu, A. C. (2012). A Comparative Analysis for Forecasting the NAV’s of Indian Mutual Fund using Multiple Regression Analysis and Artificial Neural Networks. International Journal of Trade, Economics and Finance, 3(5), 347–350. https://doi.org/10.7763/ijtef.2012.v3.225PriyadarshiniE.BabuA. C.2012A Comparative Analysis for Forecasting the NAV’s of Indian Mutual Fund using Multiple Regression Analysis and Artificial Neural NetworksInternational Journal of Trade, Economics and Finance35347350https://doi.org/10.7763/ijtef.2012.v3.225Search in Google Scholar
Ray, P., & Vina, V. (2005). Neural Network Models for Forecasting Mutual Fund Net Asset Value. 8th Capital Markets Conference, Indian Institute of Capital Markets Paper, 1–18. https://doi.org/10.2139/SSRN.872269RayP.VinaV.2005Neural Network Models for Forecasting Mutual Fund Net Asset Value8th Capital Markets Conference, Indian Institute of Capital Markets Paper118https://doi.org/10.2139/SSRN.872269Search in Google Scholar
Rout, M., Koudjonou, K. M., & Satapathy, S. C. (2020). Analysis of Net Asset Value Prediction Using Low Complexity Neural Network with Various Expansion Techniques. Evolutionary Intelligence, 0123456789. https://doi.org/10.1007/s12065-020-00365-0RoutM.KoudjonouK. M.SatapathyS. C.2020Analysis of Net Asset Value Prediction Using Low Complexity Neural Network with Various Expansion TechniquesEvolutionary Intelligence0123456789https://doi.org/10.1007/s12065-020-00365-0Search in Google Scholar
Wang, K., & Huang, S. (2010). Using Fast Adaptive Neural Network Classifier for Mutual Fund Performance Evaluation. Expert Systems with Applications, 37(8), 6007–6011. https://doi.org/10.1016/j.eswa.2010.02.003WangK.HuangS.2010Using Fast Adaptive Neural Network Classifier for Mutual Fund Performance EvaluationExpert Systems with Applications37860076011https://doi.org/10.1016/j.eswa.2010.02.003Search in Google Scholar
Xie, Y., Hwang, S., & Pantelous, A. A. (2018). Loss Aversion Around the World: Empirical Evidence from Pension Funds. Journal of Banking and Finance, 88, 52–62. https://doi.org/10.1016/j.jbankfin.2017.11.007XieY.HwangS.PantelousA. A.2018Loss Aversion Around the World: Empirical Evidence from Pension FundsJournal of Banking and Finance885262https://doi.org/10.1016/j.jbankfin.2017.11.007Search in Google Scholar
Yan, H., Liu, W., Liu, X., Kong, H., & Lv, C. (2010). Predicting Net Asset Value of Investment Fund Based on BP Neural Network. ICCASM 2010 - 2010 International Conference on Computer Application and System Modeling, Proceedings, 10. https://doi.org/10.1109/ICCASM.2010.5622625YanH.LiuW.LiuX.KongH.LvC.2010Predicting Net Asset Value of Investment Fund Based on BP Neural NetworkICCASM 2010 - 2010 International Conference on Computer Application and System Modeling, Proceedings10https://doi.org/10.1109/ICCASM.2010.5622625Search in Google Scholar
Zamojska, A. (2012). Efektywność funduszy inwestycyjnych w Polsce. Studium teoretyczno-empiryczne [The Effectiveness of Investment Funds in Poland: A Theoretical-Empirical Study]. C.H. BeckZamojskaA.2012Efektywność funduszy inwestycyjnych w Polsce. Studium teoretyczno-empiryczne [The Effectiveness of Investment Funds in Poland: A Theoretical-Empirical Study]C.H. BeckSearch in Google Scholar