This work is licensed under the Creative Commons Attribution 4.0 International License.
YU, S. – JIN, H.: Modeling of the corrosion-induced crack in concrete contained transverse crack subject to chloride ion penetration. Construction and Building Materials, 2020, vol. 258, p. 119645.Search in Google Scholar
DE AZEVEDO, A. R. – CRUZ, A. S. – MARVILA, M. T. – DE OLIVEIRA, L. B. – MONTEIRO, S. N. – VIEIRA, C. M. F, – DAIRONAS M.: Natural fibers as an alternative to synthetic fibers in reinforcement of geopolymer matrices: a comparative review. Polymers, 2021, vol. 13, no 15, p. 2493.Search in Google Scholar
SONG, H. W. – SARASWATHY, V.: Corrosion monitoring of reinforced concrete structures–a review. International journal of electrochemical science, 2007, vol. 2, no 1, p. 1-28.Search in Google Scholar
OBOT, I. B. – ONYEACHU, I. B. – ZEINO, A. – UMOREN, S. A.: Electrochemical noise (EN) technique: review of recent practical applications to corrosion electrochemistry research. Journal of Adhesion Science and Technology, 2019, vol. 33, no 13, p. 1453-1496.Search in Google Scholar
JUÁREZ ALVARADO, C. A. – RODRÍGUEZ LÓPEZ, P. – RIVERA VILLARREAL, R. – RECHY DE VON ROTH, M. D. L. Á.: Use of natural lechuguilla fibers as reinforcement in concrete [Uso de las fibras naturales de lechuguilla como refuerzo en el concreto]. Ciencia Uanl, 2003, vol. 6, no 4.Search in Google Scholar
NICOLAS, A. F. – NICOLAS, M. F. – CAMPOS, E. C. M. – CHAVARÍN, J. U.: Mechanical Behavior of Concrete Reinforced with Natural Palm and Mango Fibers. Journal of Engineering and Technological Sciences, 2025, vol. 57, no 1, p. 48-65.Search in Google Scholar
GANDEL, R. – JERABEK, J. – MARCALIKOVA, Z.: Reinforced Concrete Beams Without Shear Reinforcement Using Fiber Reinforced Concrete and Alkali-Activated Material. Civil and Environmental Engineering, 2023, vol. 19, no 1, p. 348-356.Search in Google Scholar
ABD-AL-NASER, M. – HARBA, I. S.: Strengthening of reinforced concrete beams with textile-reinforced concrete. Civil and Environmental Engineering, 2023, vol. 19, no 2, p. 596-609.Search in Google Scholar
LEGAT, A. – LEBAN, M. – BAJT, Ž.: Corrosion processes of steel in concrete characterized by means of electrochemical noise. Electrochimica Acta, 2004, vol. 49, no 17-18, p. 2741-2751.Search in Google Scholar
MA, C. – WANG, Z. – BEHNAMIAN, Y. – GAO, Z. – WU, Z. – QIN, Z. – XIA, D. H.: Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods. Measurement, 2019, vol. 138, p. 54-79.Search in Google Scholar
MILLS, D. – LAMBERT, P. – YANG, S.: Electrochemical noise measurement to assess corrosion of steel reinforcement in concrete. Materials, 2021, vol. 14, no 18, p. 5392.Search in Google Scholar
TANG, Y. – DAI, N. – WU, J. – JIANG, Y. – LI, J.: Effect of surface roughness on pitting corrosion of 2205 duplex stainless steel investigated by electrochemical noise measurements. Materials, 2019, vol. 12, no 5, p. 738.Search in Google Scholar
LI, L. – QIAO, Y. – ZHANG, L. – MA, A. – MA, R. – ZHENG, Y.: Understanding the corrosion behavior of nickel–aluminum bronze induced by cavitation corrosion using electrochemical noise: Selective phase corrosion and uniform corrosion. Materials, 2023, vol. 16, no 2, p. 669.Search in Google Scholar
SMULKO, J. M. – DAROWICKI, K. – ZIELIŃSKI, A.: Evaluation of reinforcement corrosion rate in concrete structures by electrochemical noise measurements. Russian Journal of Electrochemistry, 2006, vol. 42, p. 546-550.Search in Google Scholar
XIA, D. H. – SONG, S. – BEHNAMIAN, Y. – HU, W. – CHENG, Y. F. – LUO, J. L. – HUET, F.: electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis. Journal of the Electrochemical Society, 2020, vol. 167, no 8, p. 081507.Search in Google Scholar
TAMAYO, J. M. – CHAVARÍN, J. U.: La Técnica de Ruido Electroquímico para el estudio de la Corrosión. Instituto de Investigaciones Eléctricas: Cuernavaca, Mexico, 2002.Search in Google Scholar
ZHAO, B. – LI, J. H. – HU, R. G. – DU, R. G. – LIN, C. J.: Study on the corrosion behavior of reinforcing steel in cement mortar by electrochemical noise measurements. Electrochimica Acta, 2007, vol. 52, no 12, p. 3976-3984.Search in Google Scholar
NICOLÁS, A. F. – CAMPOS, E. C. M. – NICOLÁS, M. F. – NORIEGA, O. A. G. – PERÉZ, C. A. G. –CHAVARÍN, J. U.: Corrosion Resistance of Reinforcing Steel in Concrete Using Natural Fibers Treated with Used Engine Oil. Civil Engineering Journal, 2024, vol. 10, no 4, p. 1012-1033.Search in Google Scholar
PERMEH, S. – LAU, K.: Localized corrosion of steel in alkaline solution with low-level chloride and elevated sulfate concentrations. Cement, 2022, vol. 10, p. 100051.Search in Google Scholar
FLORES NICOLÁS, A. – MENCHACA CAMPOS, E. C. – FLORES NICOLÁS, M. – MARTÍNEZ GONZÁLEZ, J. J. – GONZÁLEZ NORIEGA, O. A. – URUCHURTU CHAVARÍN, J.: Influence of Recycled High-Density Polyethylene Fibers on the Mechanical and Electrochemical Properties of Reinforced Concrete. Fibers, 2024, vol. 12, no 3, p. 24.Search in Google Scholar
AMERICAN SOCIETY FOR TESTING AND MATERIALS: ASTM C231/C231M-22: Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method. ASTM International, 2024. Doi: 10.1520/C0231_C0231M-22.Search in Google Scholar
FLORES-NICOLÁS, A. – FLORES-NICOLÁS, M. – URUCHURTU-CHAVARÍN, J.: Corrosion effect on reinforced concrete with the addition of graphite powder and its evaluation on physical-electrochemical properties. Revista ALCONPAT, 2021, vol. 11, no 1, p. 18-33.Search in Google Scholar
COTTIS, R. A.: Interpretation of electrochemical noise data. Corrosion, 2001, vol. 57, no 03.Search in Google Scholar
ARELLANO-PÉREZ, J. H. – ESCOBAR-JIMÉNEZ, R. F. – RAMOS-NEGRÓN, O. J. – LUCIOGARCÍA, M. A. – GÓMEZ-AGUILAR, J. F. – URUCHURTU-CHAVARÍN, J.: The Use of a Time-Frequency Transform for the Analysis of Electrochemical Noise for Corrosion Estimation. Mathematical Problems in Engineering, 2022, vol. 2022, no 1, p. 4333607..Search in Google Scholar
SANCHEZ-AMAYA, J. M. – OSUNA, R. M. – BETHENCOURT, M. – BOTANA, F. J.: Monitoring the degradation of a high solids epoxy coating by means of EIS and EN. Progress in Organic Coatings, 2007, vol. 60, no 3, p. 248-254.Search in Google Scholar
STERN, M. – Geary, A. L.: Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. Journal of the electrochemical society, 1957, vol. 104, no 1, p. 56.Search in Google Scholar
SAGÜES, A. A.: Critical Issues in Electrochemical Corrosion Measurement. Techniques for Steel in Concrete. CORROSION/91, NACE, 1991.Search in Google Scholar
ESTUPIÑÁN-LÓPEZ, F. H. – ALMERAYA-CALDERÓN, F. – MARGULIS, R. B. – ZAMORA, M. B. – MARTÍNEZ-VILLAFAÑE, A. – CH, J. U. – GAONA-TIBURCIO, C.: Transient analysis of electrochemical noise for 316 and duplex 2205 stainless steels under pitting corrosion. International Journal of Electrochemical Science, 2011, vol. 6, no 6, p. 1785-1796.Search in Google Scholar
MANSFELD, F. – SUN, Z. – HSU, C. H. – NAGIUB, A.: Concerning trend removal in electrochemical noise measurements. Corrosion Science, 2001, vol. 43, no 2, p. 341-352.Search in Google Scholar
DURAR, R.: Manual for inspection, evaluation and diagnosis of corrosion in reinforced concrete structures. [Manual de inspección, evaluación y diagnóstico de corrosión en estructuras de hormigón armado]. CYTED, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Subprograma XV Corrosión/Impacto Ambiental sobre Materiales (Maracaibo, Venezuela: CYTED, 1997), 1998.Search in Google Scholar
SOLÍS-CARCAÑO, R. – MORENO, E. I. Análisis de la porosidad del concreto con agregado calizo. Revista de la Facultad de Ingeniería de la UCV, 2006, vol. 21, no 3, p. 57-68.Search in Google Scholar
GARCÍA-CONTRERAS, J. – GAONA-TIBURCIO, C. – LÓPEZ-CAZARES, I. – SANCHÉZ-DÍAZ, G. – IBARRA CASTILLO, J. C. – JÁQUEZ-MUÑOZ, J. – ALMERAYA-CALDERÓN, F.: Effect of cathodic protection on reinforced concrete with fly ash using electrochemical noise. Materials, 2021, vol. 14, no 9, p. 2438.Search in Google Scholar
DA, B. – YU, H. – MA, H. – WU, Z.: Reinforcement corrosion research based on the linear polarization resistance method for coral aggregate seawater concrete in a marine environment. Anti-corrosion methods and materials, 2018, vol. 65, no 5, p. 458-470.Search in Google Scholar
GARCIA-OCHOA, E.: Recurrence plots: A new methodology for electrochemical noise signal analysis. Journal of Electroanalytical Chemistry, 2020, vol. 864, p. 114092.Search in Google Scholar
NIEVES-MENDOZA, D. – ALMERAYA-CALDERON, F. – URUCHURTU-CHAVARIN, J. – MARTINEZ-VILLAFANE, A. – CHACON-NAVA, J. – BALTAZAR-ZAMORA, M. – MENCHACA, J. L.: Evaluation of reinforced concrete structures by means of a novel electrochemical noise corrosion sensor. Corrosion, 2008, vol. 64, no 12, p. 920-928.Search in Google Scholar