Accesso libero

Impact of Strength-Enhancing Admixtures on Stabilization of Expansive Soil by Addition of Alternative Binders

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] YOUNG, J. F.: Portland Cements. Eds.: BUSCHOW, K. H. J. – CAHN, R. W. – FLEMINGS, M. C. – ILSCHNER, B. – KRAMER, E. J. – MAHAJAN, S. – VEYSSIÈRE. P.: Encyclopedia of Materials: Science and Technology. Elsevier, 2001, pp. 7768-7773, doi: 10.1016/B0-08-043152-6/01398-X. Open DOISearch in Google Scholar

[2] SORSA, A.: Engineering Properties of Cement Stabilized Expansive Clay Soil. Civil and Environmental Engineering, Vol. 18, Iss. 1, 2022, pp. 332-339, doi: 10.2478/cee-2022-0031. Open DOISearch in Google Scholar

[3] CHERIAN, C. – ARNEPALLI, D. N.: A Critical Appraisal of the Role of Clay Mineralogy in Lime Stabilization. International Journal of Geosynthetics and Ground Engineering, Vol. 1, Nr. 8, 2015, 20 p.10.1007/s40891-015-0009-3 Search in Google Scholar

[4] LINDH, P. – LEMENKOVA, P.: Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden. Baltica, Vol. 35, Iss. 1, 2022, pp. 47–59, doi: 10.5200/baltica.2022.1.4. Open DOISearch in Google Scholar

[5] SHAH, S. – ARIF, M. – SABIR, M. – REHMAN, Q.: Impact of Igneous Rock Admixtures on Geotechnical Properties of Lime Stabilized Clay. Civil and Environmental Engineering, Vol. 16, Iss. 2, 2020, pp. 329-339, doi: 10.2478/cee-2020-0033. Open DOISearch in Google Scholar

[6] LINDH, P. – LEMENKOVA, P.: Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments. Acta Mechanica et Automatica, Vol. 15, Iss. 4, 2021, pp. 236–248, doi: 10.2478/ama-2021-0030. Open DOISearch in Google Scholar

[7] EBEREMU, A. O. – OSINUBI, K. J. – IJIMDIYA, T. S. – SANI, J. E.: Cement Kiln Dust: Locust Bean Waste Ash Blend Stabilization of Tropical Black Clay for Road Construction. Geotechnical and Geological Engineering, Vol. 37, 2019, pp. 3459–3468, doi: 10.1007/s10706-018-00794-w. Open DOISearch in Google Scholar

[8] OGILA, W. A. M.: Effectiveness of fresh cement kiln dust as a soil stabilizer and stabilization mechanism of high swelling clays. Environmental Earth Sciences, Vol. 80, Nr. 283, 2021.10.1007/s12665-021-09589-4 Search in Google Scholar

[9] LINDH, P.: Optimizing binder blends for shallow stabilisation of fine-grained soils. Ground Improvement, Vol. 5, 2001, pp. 23–34, doi: 10.1680/grim.2001.5.1.23. Open DOISearch in Google Scholar

[10] LINDH, P. – LEMENKOVA, P.: Seismic velocity of P-waves to evaluate strength of stabilized soil for Svenska Cellulosa Aktiebolaget Biorefinery Östrand AB, Timrå. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 70, Iss. 4, 2022, pp. 1–9. Search in Google Scholar

[11] DOLGIKH, P. D.: Stabilization of slumping loess soils by injection of a lime-slag suspension. Soil Mechanics and Foundation Engineering, Vol. 3, 1966, pp. 272–273, doi: 10.1007/BF01703524. Open DOISearch in Google Scholar

[12] LINDH, P. – LEMENKOVA, P.: Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, Vol. 38, Iss. 2, 2022, pp. 147–168. Search in Google Scholar

[13] GRUBEŠA, I. N. – BARIŠIĆ, I. – FUCIC, A. – BANSODE, S. S.: 4 – Application of blast furnace slag in civil engineering: Worldwide studies. Characteristics and Uses of Steel Slag in Building Construction, 2016, pp. 51–66, doi: 10.1016/B978-0-08-100368-8.00004-X. Open DOISearch in Google Scholar

[14] MARK, O. – EDE, A. – ARUM, C. – OYEBISI, S.: Effects of Induction-Furnace Slag on Strength Properties of Self-Compacting Concrete. Civil and Environmental Engineering, Vol. 17, Iss. 2, 2021, pp. 513-527, doi: 10.2478/cee-2021-0053. Open DOISearch in Google Scholar

[15] DOUCET, F. J.: Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. Minerals Engineering, Vol. 23, Iss. 3, 2010, pp. 262-269, doi: 10.1016/j.mineng.2009.09.006. Open DOISearch in Google Scholar

[16] LINDH, P. – LEMENKOVA, P.: Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments. Nordic Concrete Research, Vol. 65, Iss. 2, 2021, pp. 39–62, doi: 10.2478/ncr-2021-0012. Open DOISearch in Google Scholar

[17] ISMAIL, A. I. M. – RYDEN, N.: The Quality Control of Engineering Properties for Stabilizing Silty Nile Delta Clay Soil, Egypt. Geotechnical and Geological Engineering, Vol. 32, 2014, pp. 773–781.10.1007/s10706-014-9756-5 Search in Google Scholar

[18] JIAO, H. – DU, X. – ZHAO, M. – HUANG, J. – ZHAO, X. – OUYANG, W.: Nonlinear Seismic Response of Rock Tunnels Crossing Inactive Fault under Obliquely Incident Seismic P Waves. Journal of Earth Science, Vol. 32, 2021, pp. 1174–1189, doi: 10.1007/s12583-021-1483-2. Open DOISearch in Google Scholar

[19] CARPINTERI, A. – LACIDOGNA, G. – PUGNO, N.: Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Engineering Fracture Mechanics, Vol. 74, 2007, pp. 273–289, doi: 10.1016/j.engfracmech.2006.01.036. Open DOISearch in Google Scholar

[20] AGGELIS, D. G.: Classification of cracking mode in concrete by acoustic emission parameters. Mechanics Research Communications, Vol. 38, 2011, pp. 153–157.10.1016/j.mechrescom.2011.03.007 Search in Google Scholar

[21] SS-EN 13286-41 Unbound and hydraulically bound road materials – Part 41: Test method for determining the compressive strength of hydraulically bound materials (in Swedish). Swedish Institute for Standards, 2003. Search in Google Scholar

[22] SS-EN 137244: Concrete testing – Hardened concrete – Flaking during freezing (in Swedish). Swedish Institute for Standards, 2005. Search in Google Scholar

[23] MURTHI, P. – SARAVANAN, R. – POONGODI, K.: Studies on the impact of polypropylene and silica fume blended combination on the material behaviour of black cotton soil. Materials Today Proceedings, Vol. 39, 2021, pp. 621–626, doi: 10.1016/j.matpr.2020.09.004 Open DOISearch in Google Scholar

[24] YIN, Z. – LEKALPURE, R. L. – NDIEMA, K. M.: Experimental Study of Black Cotton Soil Stabilization with Natural Lime and Pozzolans in Pavement Subgrade Construction. Coatings, Vol. 12, Iss. 1, 2022, p. 103, doi: 10.3390/coatings12010103 Open DOISearch in Google Scholar

[25] NAVAGIRE, O. P. – SHARMA, S. K. – RAMBABU, D.: Stabilization of black cotton soil with coal bottom ash. Materials Today: Proceedings, Vol. 52, 2022, pp. 979–985.10.1016/j.matpr.2021.10.447 Search in Google Scholar

eISSN:
2199-6512
Lingua:
Inglese