Accesso libero

Methods of Preliminary Estimation of Total Solar Energy Transmittance (TSET) on a Sun Protected Window with Climatic Chamber and Hot Box Apparatus

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] HARVEY, D.: Energy and the new reality 1: Energy efficiency and the demand for energy services. Routledge, 2010.10.4324/9781849774918 Search in Google Scholar

[2] SONG, S. Y. - JO, J. H. - YEO, M. S. - KIM, Y. D.: Evaluation of inside surface condensation in double glazing window system with insulation spacer: A case study of residential complex. Building and Environment, Vol. 42, Iss. 2, 2007, pp. 940-950.10.1016/j.buildenv.2005.10.015 Search in Google Scholar

[3] LAUKKARINEN, A. - KERO, P. - VINHA, J.: Condensation at the exterior surface of Windows. Journal of Building Engineering, Vol. 19, 2018, pp. 592-601.10.1016/j.jobe.2018.06.014 Search in Google Scholar

[4] TETTEY, U. Y. A. - GUSTAVSSON, L.: Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change. Energy, Vol. 202, 2020.10.1016/j.energy.2020.117578 Search in Google Scholar

[5] FIGUEROA-LOPEZ, A. - ARIAS, A. - OREGI, X. - RODRÍGUEZ, I.: Evaluation of passive strategies, natural ventilation and shading systems, to reduce overheating risk in a passive house tower in the north of Spain during the warm season. Journal of Building Engineering, Vol. 43, 2021.10.1016/j.jobe.2021.102607 Search in Google Scholar

[6] GUPTA, R. - HOWARD, A. - DAVIES, M. - MAVROGIANNI, A. - TSOULOU, I. - JAIN, N. -OIKONOMOU, E. - WILKINSON, P.: Monitoring and modelling the risk of summertime overheating and passive solutions to avoid active cooling in London care homes. Energy and Buildings, Vol. 252, 2021.10.1016/j.enbuild.2021.111418 Search in Google Scholar

[7] DODOO, A. - GUSTAVSSON, L. - TETTEY, U. Y. A.: Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building. Energy, Vol. 135, 2017, pp. 563-576.10.1016/j.energy.2017.06.123 Search in Google Scholar

[8] BIZOŇOVÁ, S.: Thermal-optical properties of progressive window structures. Dissertation thesis, 136 p., 2021. Search in Google Scholar

[9] EN 410: Glass in building – Determination of luminous and solar characteristics of glazing. European Committee for Standardization, 2011. Search in Google Scholar

[10] PLATZER, W.: The ALTSET project - Measurement of angular properties for complex glazings. Proceedings of the Third International ISES Solar Congress, Copenhagen, Denmark, 19-22, June 2000. Search in Google Scholar

[11] KUHN, T.: Calorimetric determination of the solar heat gain coefficient g with steady-state laboratory measurements. Energy and Buildings, Vol. 84, 2014, pp. 388-402.10.1016/j.enbuild.2014.08.021 Search in Google Scholar

[12] MARINOSKI, L. D. - GÜTHS, S. - LAMBERTS, R.: Development of a calorimeter for determination of the solar factor of architectural glass and fenestrations. Building and Environment, Vol. 47, 2012, pp. 232-242.10.1016/j.buildenv.2011.07.017 Search in Google Scholar

[13] CHEN, F. - WITTKOPF, S. K.: Summer condition thermal transmittance measurement of fenestration systems using calorimetric hotbox. Energy and Buildings, Vol. 53, 2012, pp. 47–56.10.1016/j.enbuild.2012.07.005 Search in Google Scholar

[14] CHO, K. J. - CHO, D. W.: Solar Heat Gain Coefficient Analysis of a Slim-Type Double Skin Window System: Using an Experimental and a Simulation Method. Energies, Vol. 11, 115, 2018.10.3390/en11010115 Search in Google Scholar

[15] PAGLIANO, L. - CATTARIN, G. - CAUSONE, F. - KINDINIS, A.: Improved methods for the calorimetric determination of the solar factor in outdoor test cell facilities. Energy and Buildings, Vol. 153, 2017, pp. 513-524.10.1016/j.enbuild.2017.07.028 Search in Google Scholar

[16] ISO 19467: Thermal performance of windows and doors – Determination of solar heat gain coefficient using solar simulator, 2017. Search in Google Scholar

[17] STEJSKALOVA, K. - VAVRINOVA, N.: Assessment of the Summer Thermal Stability of the Attic Room Using Two Different Software. Civil and Environmental Engineering, Vol. 16, Iss. 2, 2020, pp. 360-369.10.2478/cee-2020-0036 Search in Google Scholar

[18] CHEN, F. - WITTKOPF, S. K. - NG, P. K. - DU, H.: Solar heat gain coefficient measurement of semi-transparent photovoltaic modules with indoor calorimetric hot box and solar simulator. Energy and Buildings, Vol. 53, 2012, pp. 74-84.10.1016/j.enbuild.2012.06.005 Search in Google Scholar

[19] HARRISON, S. J. - VAN WONDEREN, S. J.: Solar heat gain performance evaluation of commercial solar-control glazings and shading devices. Canada: N. p., 1996. Web. Search in Google Scholar

[20] GUEYMARD, Ch.: Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Solar Energy, Vol. 83, 2009, pp. 432-444.10.1016/j.solener.2008.11.004 Search in Google Scholar

[21] KATUNSKÝ, D. – ZOZULÁK, M. – VERTAĽ, M. – ŠIMIČEK, J.: Experimentally Measured Boundary and Initial Conditions for Simulations. Advanced Materials Research. Trans Tech Publications, Vol. 1041, 2014, pp. 293-296.10.4028/www.scientific.net/AMR.1041.293 Search in Google Scholar

[22] EN ISO 12567-1: 2010 Thermal performance of windows and doors - Determination of thermal transmittance by the hot-box method - Part 1: Complete windows and doors. Search in Google Scholar

[23] ČEKON, M. - KALOUSEK, M. - HRAŠKA, J. - INGELI, R.: Spectral optical properties and thermodynamic performance of reflective coatings in a mild climate zone. Energy and Buildings, Vol. 77, 2014, pp. 343-354.10.1016/j.enbuild.2014.04.005 Search in Google Scholar

[24] PONECHAL, R. - CHABADA, M.: The Impact of Ventilation and Shading Control on the Result of Summer Overheating Simulation. Civil and Environmental Engineering, Vol. 17, Iss. 1, 2021, pp. 327-334.10.2478/cee-2021-0034 Search in Google Scholar

eISSN:
2199-6512
Lingua:
Inglese