Accesso libero

Three-Dimensional Permeability Study of Open Graded Friction Course (OGFC) Based on CFD Simulation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] XU, F. – HE, Z. – SHA, Z. – ZHUANG, L. – SUN, W.: Assessing the Impact of Rainfall on Traffic Operation of Urban Road Network. Procedia - Social and Behavioral Sciences, Vol. 96, 2013, pp. 82-89, doi:10.1016/j.sbspro.2013.08.012. Open DOISearch in Google Scholar

[2] SUHARYANTO, A.: Estimating Flood Inundation Depth Along the Arterial Road Based on The Rainfall Intensity. Civil and Environmental Engineering, Vol. 17, Iss 1, 2021, pp. 66-81, doi: 10.2478/cee-2021-0008. Open DOISearch in Google Scholar

[3] SMIT, A. D. F. – PROZZI, J. A.: Quantification of the Reduction of Wet Weather Accidents Using Porous Friction Courses (PFC). Procedia - Social and Behavioral Sciences, Vol. 96, 2013, pp. 2745-2755, doi:10.1016/j.sbspro.2013.08.308. Open DOISearch in Google Scholar

[4] TAKAHASHI, S.: Comprehensive Study on the Porous Asphalt Effects on Expressways in Japan: Based on Field Data Analysis in the Last Decade. Road Materials and Pavement Design, Vol. 14, Iss. 2, 2013, pp. 239-255, doi:10.1080/14680629.2013.779298. Open DOISearch in Google Scholar

[5] ZHANG, Q. – JI, T. – WANG, Z. – XIAO, L.: Experimental Study and Calculation of a Three-Dimensional Finite Element Model of Infiltration in Drainage Asphalt Pavement. Materials, Vol. 13, Iss. 18, 2020, pp. 1-15, doi:10.3390/ma13183909. Open DOISearch in Google Scholar

[6] AL-OMARI, A. – MASAD, E.: Three Dimensional Simulation of Fluid Flow in X-Ray CT Images of Porous Media. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 28, Iss. 13, 2004, pp. 1327-1360, doi:10.1002/nag.389. Open DOISearch in Google Scholar

[7] JAMES, T. – WATSON, D. – TAYLOR, A. – TRAN, N. – RODEZNO, C.: Improving Cohesiveness of Porous Friction Course Asphalt Mixtures. Road Materials and Pavement Design, Vol. 18, Iss. sup4, 2017, pp. 256-272, doi:10.1080/14680629.2017.1389073. Open DOISearch in Google Scholar

[8] ZHANG, L. – ONG, G. P. – FWA, T. F.: Evaluating the Influence of Aggregate Size on Permeability of Porous Pavements Using Finite Volume Simulation. International Journal of Pavement Research and Technology, Vol. 6, Iss. 5, 2013, pp. 520-526. Search in Google Scholar

[9] ABDUL HASSAN, N. – MAHMUD, M. Z. H. – AHMAD, K. A. – HAININ, M. R. – JAYA, R. P. – MASHROS, N.: Air Voids Characterisation and Permeability of Porous Asphalt Gradations Used in Different Countries. Journal of Engineering and Applied Sciences, Vol. 11, Iss. 24, 2016, pp. 14043-14047. Search in Google Scholar

[10] ACEVEDO, C. J. S. – GONZÁLEZ, P. L. – VEGA, I. I. – FRESNO, D. C.: Laboratory Assessment of Porous Asphalt Mixtures Reinforced with Synthetic Fibers. Construction and Building Materials, Vol. 234, 2020, pp. 1-11, doi:10.1016/j.conbuildmat.2019.117224. Open DOISearch in Google Scholar

[11] GUPTA, A. – GONZALEZ, P. L. – FRESNO, D. C. – HERNANDEZ, J. R.: Laboratory Characterization of Porous Asphalt Mixtures with Aramid Fibers. Materials, Vol. 14, Iss. 8, 2021, pp. 1-14.10.3390/ma14081935 Search in Google Scholar

[12] QURESHI, N. A. – FAROOQ, S. H. – KHURSHID, B.: Laboratory Evaluation of Durability of Open-Graded Friction Course Mixtures. International Journal of Engineering and Technology (IJET), Vol. 7, Iss. 3, 2015, pp. 956-964. Search in Google Scholar

[13] ALVAREZ, A. E. – MARTIN, A. E. – ESTAKHRI, C.: A Review of Mix Design and Evaluation Research for Permeable Friction Course Mixtures. Construction and Building Materials, Vol. 25, Iss. 3, 2011, pp. 1159-1166, doi:10.1016/j.conbuildmat.2010.09.038. Open DOISearch in Google Scholar

[14] MA, X. – JIANG, J. – ZHAO, Y. – WANG, H.: Characterization of the Interconnected Pore and Its Relationship to the Directional Permeability of Porous Asphalt Mixture. Construction and Building Materials, Vol. 269, 2021, pp. 1-11, doi:10.1016/j.conbuildmat.2020.121233. Open DOISearch in Google Scholar

[15] TANZADEH, R. – TANZADEH, J. – HONARMAND, M. – TAHAMI, S. A.: Experimental Study on the Effect of Basalt and Glass Fibers on Behavior of Open-Graded Friction Course Asphalt Modified With Nano-Silica. Construction and Building Materials, Vol. 212, 2019, pp. 467-475, doi:10.1016/j.conbuildmat.2019.04.010. Open DOISearch in Google Scholar

[16] CHEN, J. – WANG, H. – ZHU, H.: Investigation of Permeability of Open Graded Asphalt Mixture Considering Effects of Anisotropy and Two-Dimensional Flow. Construction and Building Materials, Vol. 145, 2017, pp. 318-325, doi:10.1016/j.conbuildmat.2017.04.028. Open DOISearch in Google Scholar

[17] BARRIE, P. J.: Characterization of Porous Media Using NMR Methods. Annual Reports on NMR Spectroscopy, Vol. 41, 2000, pp. 265-316.10.1016/S0066-4103(00)41011-2 Search in Google Scholar

[18] CHEN, J. – YIN, X. – WANG, H. – MA, X. – DING, Y. – LIAO, G.: Directional Distribution of Three-Dimensional Connected Voids in Porous Asphalt Mixture and Flow Simulation of Permeability Anisotropy. International Journal of Pavement Engineering, Vol. 21, Iss. 12, 2018, pp. 1550-1562, doi:10.1080/10298436.2018.1555330. Open DOISearch in Google Scholar

[19] COLES, M. E. – HAZLETT, R. D. – SPANNE, P. – SOLL, W. E. – MUEGGE, E. L. – JONES, K. W.: Pore Level Imaging of Fluid Transport Using Synchrotron X-Ray Microtomography. Journal of Petroleum Science and Engineering, Vol. 19, 1998, pp. 55-63.10.1016/S0920-4105(97)00035-1 Search in Google Scholar

[20] CHEN, S. – YOU, Z. – YANG, S. L. – GARCIA, A. – ROSE, L.: Influence of Air Void Structures on the Coefficient of Permeability of Asphalt Mixtures. Powder Technology, Vol. 377, 2021, pp. 1-9.10.1016/j.powtec.2020.08.082 Search in Google Scholar

[21] CHEN, S. – YOU, Z. – YANG, S. L. – ZHOU, X.: Prediction of the Coefficient of Permeability of Asphalt Mixtures Using the Lattice Boltzmann Method. Construction and Building Materials, Vol. 240, 2020, pp. 1-12, doi:10.1016/j.conbuildmat.2019.117896. Open DOISearch in Google Scholar

[22] MASAD, E. – AL OMARI, A. – CHEN, H. C.: Computations of Permeability Tensor Coefficients and Anisotropy of Asphalt Concrete Based on Microstructure Simulation of Fluid Flow. Computational Materials Science, Vol. 40, Iss. 4, 2007, pp. 449-459, doi:10.1016/j.commatsci.2007.01.015. Open DOISearch in Google Scholar

[23] KANDHAL, P. S.: Design, Construction, and Maintenance of Open-Graded Asphalt Friction Courses. National Asphalt Pavement Association, Maryland, 2002. Search in Google Scholar

[24] ESTAKHRI, C. K. – ALVAREZ, A. E. – MARTIN, A. E.: Guidelines on Construction and Maintenance of Porous Friction Courses in Texas. Texas Transportation Institute, Texas 2008. Search in Google Scholar

[25] PUTMAN, B. J.: Evaluation of Open-Graded Friction Courses: Construction, Maintenance, and Performance. South Carolina Department of Transportation, South Carolina, 2012. Search in Google Scholar

[26] GRUBER, I. – ZINOVIK, I. – HOLZER, L. – FLISCH, A. – POULIKAKOS, L. D.: A Computational Study of the Effect of Structural Anisotropy of Porous Asphalt on Hydraulic Conductivity. Construction and Building Materials, Vol. 36, 2012, pp. 66-77, doi:10.1016/j.conbuildmat.2012.04.094. Open DOISearch in Google Scholar

[27] AFONSO, M. L. – TIAGO, S. S. – CRISTINA, S. F. – MARISA, D. A.: Hydraulic Conductivity of the Permeable Asphalt Pavement – Laboratory vs In Situ Test. IOP Conference Series: Materials Science and Engineering, Vol. 471, 2019, pp. 1-10, doi:10.1088/1757-899x/471/2/022023. Open DOISearch in Google Scholar

[28] ZHANG, J. – GUODONG, M. – RUIPING, M. – XINZHUANG, C. – LI, L. – HUINING, X.: Numerical Study on Seepage Flow in Pervious Concrete Based on 3D CT Imaging. Construction and Building Materials, Vol. 161, 2018, pp. 468-478, doi:10.1016/j.conbuildmat.2017.11.149. Open DOISearch in Google Scholar

eISSN:
2199-6512
Lingua:
Inglese