Accesso libero

Estimating Flood Inundation Depth Along the Arterial Road Based on the Rainfall Intensity

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] SHASTRY, A. – DURAND, M.: Utilizing flood inundation observations to obtain floodplain topography in data-scarce regions. Front. Earth Sci., Vol. 6, Iss. 243, 2019, pp. 1-10. doi: 10.3389/feart. 2018. 00243.10.3389/feart Search in Google Scholar

[2] VOJTEK, M. – PETROSELLI, A. – VOJTEKOVÁ, J. – ASGHARINIA, S.: Flood inundation mapping in small and ungauged basins: sensitivity analysis using the EBA4SUB and HEC-RAS modeling approach. Hydrology Research, Vol. 50, Iss. 4, 2019, pp.1002-1019. IWA Publishing, doi: 10.2166/nh.2019.163.10.2166/nh.2019.163 Search in Google Scholar

[3] SLATER, L. J. – KHOUAKHI, A. – WILBY, R. L.: River channel conveyance capacity adjusts to modes of climate variability. Scientific Reports, Vol. 9, Iss. 12619, 2019, pp. 1-10. Nature research, doi.org/10.1038/s41598-019-48782-1. Search in Google Scholar

[4] CZUBA, J. A. – CZUBA, C. R. – MAGIRL, C. S. – VOSS, F. D.: Channel-conveyance capacity, channel change, and sediment transport in the lower Puyallup, White, and Carbon Rivers. Western Washington, Scientific Investigations Report, Iss. 5240, 2010, pp. 11-19. USGS.10.3133/sir20105240 Search in Google Scholar

[5] JARA, M. C. – ECHAVEGUREN, T. – BAECHELER, J.V. – GINÉ, A. C. – TAMPIER, H. S.: Reliability-based estimation of traffic interruption probability due to road waterlogging. Journal of Advanced Transportation, Vol. 2018, 2018, pp. 1-12. Hindawi. doi.org/10.1155/2018/2850546. Search in Google Scholar

[6] WANG, W. – YANG, S. – STANLEY, H. E. – GAO, J.: Local floods induce large-scale abrupt failures of road networks. Nature Communications, Vol. 10, Iss. 2114, 2019, pp. 1-11. doi.org/10.1038/s41467-019-10063-w.10.1038/s41467-019-10063-w Search in Google Scholar

[7] MAHMOUDI, M. – TABATABAI, M. R. M. – MOUSAVI, S.: An Analytical Approach to Estimate Optimum River Channel Dimensions. International Journal of Science and Technology, Scientia Iranica, Vol. 26, Iss. 3, 2018, pp. 1169-1181. doi: 10.24200/sci.2018.20552.10.24200/sci.2018.20552 Search in Google Scholar

[8] NIAZKAR, M. – AFZALI, S. H.: Optimum Design of Lined Channel Sections. Water Resources Management, Vol. 29, Iss. 6, 2015, pp. 1921-1932. doi: 10.1007/s11269-015-0919-9.10.1007/s11269-015-0919-9 Search in Google Scholar

[9] RAO, K. N.: Analysis of surface runoff potential in ungauged basin using basin parameters and SCS-CN method. Applied Water Science, Vol. 10, Iss. 47, 2020, pp. 1-16. doi.org/10.1007/s13201-019-1129-z.10.1007/s13201-019-1129-z Search in Google Scholar

[10] LIU, Z. – CAI, Y. – WANG, S. – LAN, F. – WU, X.: Small and medium-scale river flood controls in highly urbanized areas: a whole region perspective. Water, Vol. 12, Iss. 1, 2020, p. 182. MDPI. doi:10.3390/w12010182.10.3390/w12010182 Search in Google Scholar

[11] SAMPAIO, F. E. O. V. – ALVES, C. M. A.: A procedure to analyze the viability of rainwater harvesting systems in urban areas based on pre-defined diagrams. Brazilian Journal of Water Resources, RBRH, Porto Alegre, Vol. 22, Iss. 60, 2017, pp.10-20. doi.org/10.1590/2318-0331.0217160012.10.1590/2318-0331.0217160012 Search in Google Scholar

[12] MAHMOUD, S. H. – MOHAMMAD, F. S. – ALAZBA, A. A.: Determination of potential runoff coefficient for Al-Baha region, Saudi Arabia using GIS. Arab J Geosciences, Vol. 7, 2014, pp. 2041–2057. doi: 10.1007/s12517-014-1303-4.10.1007/s12517-014-1303-4 Search in Google Scholar

[13] MUSTAFA, A. – SZYDŁOWSKI, M.: The Impact of spatiotemporal changes in land development (1984–2019) on the increase in the runoff coefficient in Erbil, Kurdistan Region of Iraq. Remote Sensing. Vol. 12, Iss. 8, 2020, p. 1302. MDPI. doi:10.3390/rs12081302.10.3390/rs12081302 Search in Google Scholar

[14] JUODKIENĖ, V.: GIS in tourism development using spatial modeling. Civil and Environmental Engineering, Vol. 10, Iss. 2, 2014, pp. 98-104. De Gruyter. doi: 10.2478/cee-2014-0018.10.2478/cee-2014-0018 Search in Google Scholar

[15] WAIYASUSRI, K. – CHOTPANTARAT, S.: Watershed prioritization of Kaeng Lawa subwatershed, Khon Kaen Province using the morphometric and land-use analysis: a case study of heavy flooding caused by tropical storm Podul. Water, Vol. 12, Iss. 6, 2020, p. 1570. MDPI. doi:10.3390/w12061570.10.3390/w12061570 Search in Google Scholar

[16] NATAKUSUMAH, D. K. – HARLAN, D. – HATMOKO, W.: A new synthetic unit hydrograph computation method based on the mass conservation principle. WIT Transactions on Ecology and The Environment, Vol. 172, 2013. WIT Press. doi:10.2495/RBM130031.10.2495/RBM130031 Search in Google Scholar

[17] TUNAS, I. G. – ANWAR, N. – LASMINTO, U.: Parameters Estimation of Synthetic Unit Hydrograph Model Using Multiple Linear and Non-linear Regressions. 2nd International Conference on Applied Mathematics, 2017. Simulation and Modelling (AMSM). ISBN: 978-1-60595-480-6.10.12783/dtetr/amsm2017/14844 Search in Google Scholar

[18] NIGUSSIE, T. A. – YEĞEN, E. B. – MELESSE, A. M.: Performance evaluation of synthetic unit hydrograph methods in Mediterranean climate. A case Study at Guvenc micro-watershed, Turkey, Landscape Dynamics, Soils and Hydrological Processes in Varied Climates, Book Series: Springer Geography, Publisher: Springer International Publishing, 2018, ISBN 978-3-319-18787-7. Search in Google Scholar

[19] SINGH, P – GUPTA, A. – SINGH, M.: Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Sciences, Vol. 17, Iss. 2, 2014, pp. 111–121. dx.doi.org/10.1016/j.ejrs.2014.09.003.10.1016/j.ejrs.2014.09.003 Search in Google Scholar

[20] GEBRE, T. – KIBRU, T. – TESFAYE, S. – TAYE, G.: Analysis of watershed attributes for water resources management using GIS: the case of Chelekot micro-watershed, Tigray, Ethiopia. Journal of Geographic Information System, Vol. 7, Iss. 2, 2015, pp. 177-190. dx.doi.org/10.4236/jgis.2015.72015.10.4236/jgis.2015.72015 Search in Google Scholar

[21] HU, S. – FAN, Y. – ZHANG, T.: Assessing the effect of land use change on surface runoff in a rapidly urbanized city: a case study of the central area of Beijing. Land, Vol. 9, Iss. 1, 2020, p. 17. MDPI, doi: 10.3390/land9010017.10.3390/land9010017 Search in Google Scholar

[22] SRIWONGSITANON, N. – TAESOMBAT, W.: Effects of land cover on runoff coefficient. Journal of Hydrology, Vol. 410, Iss. 3-4, 2011, pp. 226-238. doi: 10.1016/j.jhydrol.2011.09.021.10.1016/j.jhydrol.2011.09.021 Search in Google Scholar

[23] KUMAR, R. – BHARDWAJ, A.: Probability analysis of return period of daily maximum rainfall in annual data set of Ludhiana, Punjab. Indian J. Agric. Res., Vol. 49, Iss. 2, 2015, pp. 160-164. Online ISSN: 0976-058X.10.5958/0976-058X.2015.00023.2 Search in Google Scholar

[24] BESKOWA, S – CALDEIRAB, T. L. – MELLOC, C. R. – FARIAA, L. C. – GUEDES, H. A. S.: Multiparameter probability distributions for heavy rainfall modeling in extreme southern Brazil. Journal of Hydrology: Regional Studies Vol. 4, Iss. B, 2015, pp. 123-133. dx.doi.org/10.1016/j.ejrh.2015.06.007.10.1016/j.ejrh.2015.06.007 Search in Google Scholar

[25] YE, L. – HANSON, L. S. – DING, P. – WANG, D. – VOGEL, R. M.: The probability distribution of daily precipitation at the point and catchment scales in the United States. Hydrol. Earth Syst. Sci., Vol. 22, Iss. 12, 2018, pp. 6519-6531. doi.org/10.5194/hess-22-6519-2018.10.5194/hess-22-6519-2018 Search in Google Scholar

[26] CLARKE, R. T.: Stochastic Hydrology Revisited, RBRH - Revista Brasileira de Recursos Hídricos, Vol. 7, Iss. 4, 2002, pp. 97-104.10.21168/rbrh.v7n4.p94-104 Search in Google Scholar

[27] KANG, M. S. – GOO, J. H. – SONG, I. – CHUN, J. A. – HER, Y. G. – HWANG, S. W. – PARK, S. W.: Estimating design floods based on the critical storm duration for small watersheds. Journal of Hydro-environment Research. Vol. 7, Iss. 3, 2013, pp. 209-218. 209e218. dx.doi.org/10.1016/j.jher. 2013.01.003.10.1016/j.jher.2013.01.003 Search in Google Scholar

[28] YOO, C. – JUN, C. – PARK, C.: Effect of rainfall temporal distribution on the conversion factor to convert the fixed-interval into true-interval rainfall. Journal of Hydrologic Engineering, Vol. 20, Iss. 10, 2015. ASCE, doi.org/10.1061/(ASCE)HE.1943-5584.0001178.10.1061/(ASCE)HE.1943-5584.0001178 Search in Google Scholar

[29] KUSUMASTUTI, C. – SUDJARWO, P. – CHRISTHIE, M. – KRISNA, T.: Intensity-duration-frequency (IDF) curve and the most suitable method to determine flood peak discharge in upper Werba sub-watershed. Civil Engineering Dimension, Vol. 21, Iss. 2, 2019, pp. 70-75. doi:10.9744/CED.21.2.70-75.10.9744/ced.21.2.70-75 Search in Google Scholar

[30] GAŠPAROVIĆA, M. – ZRINJSKIB, M. – GUDELJ, M.: Automatic cost-effective method for land cover classification (ALCC). Computers, Environment and Urban Systems, Vol. 76, 2019, pp. 1–10. doi.org/10.1016/j.compenvurbsys.2019.03.001.10.1016/j.compenvurbsys.2019.03.001 Search in Google Scholar

[31] VIVEKANANDA, G. N. – SWATHI, R. – SUJITH, A. V. L. N.: Multi-temporal image analysis for LULC classification and change detection. European Journal of Remote Sensing, Vol. 53, Iss. 1, 2020, pp. 1-11. doi:10.1080/22797254.2020.1771215.10.1080/22797254.2020.1771215 Search in Google Scholar

[32] SARCHANI, S. – SEIRADAKIS, K. – COULIBALY, P. – TSANIS, I.: Flood inundation mapping in an ungauged basin. Water, Vol. 12, Iss. 6, 2020, p. 1532. MDPI. doi: 10.3390/w12061532.10.3390/w12061532 Search in Google Scholar

[33] MOKHTAR, E. S. – PRADHAN, B. – GHAZALI, A. H. – SHAFRI, H. Z. M.: Assessing flood inundation mapping through estimated discharge using GIS and HEC-RAS model. Arabian Journal of Geosciences, Vol. 11, Iss. 682, 2018, pp. 1-20. doi.org/10.1007/s12517-018-4040-2.10.1007/s12517-018-4040-2 Search in Google Scholar

[34] ASDAK, C.: Hydrology for watershed management, 5th edition, 2010, pp. 30-50. Gadjah Mada University Press Yogyakarta, Indonesia. Search in Google Scholar

eISSN:
2199-6512
Lingua:
Inglese