INFORMAZIONI SU QUESTO ARTICOLO

Cita

Kroto HW, Zielińska M, Rajfur M, Wacławek M. The climate change crisis? Chem Didact Ecol Metrol. 2016;21:11-27. DOI: 10.1515/cdem-2016-0001. Search in Google Scholar

Crutzen PJ, Wacławek S. Atmospheric chemistry and climate in the anthropocene. Chem Didact Ecol Metrol. 2014;19: 9-28. DOI: 10.1515/cdem-2014-0001. Search in Google Scholar

Palmer E. Introduction: The Sustainable Development Goals Forum. J Glob Ethics. 2015;11:3-9. DOI: 10.1080/17449626.2015.1021091. Search in Google Scholar

Wu C-H, Tsai S-B, Liu W, Shao X-F, Sun R, Wacławek M. Eco-technology and eco-innovation for green sustainable growth. Ecol Chem Eng S. 2021;28:7-10. DOI: 10.2478/eces-2021-0001. Search in Google Scholar

Fetting C. The European Green Deal. ESDN Report. 2020. Available from: https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf. Search in Google Scholar

Vara Prasad MN, Smol M, Freitas H. Achieving sustainable development goals via green deal strategies. Sustainable and Circular Management of Resources and Waste Towards a Green Deal. Elsevier; 2023. pp. 3-23. DOI: 10.1016/B978-0-323-95278-1.00002-4. Search in Google Scholar

Kirby A. Kick the habit: A UN guide to climate neutrality. 2008. DOI: 10.17226/23490. Search in Google Scholar

Adams S, Adedoyin F, Olaniran E, Bekun FV. Energy consumption, economic policy uncertainty and carbon emissions; causality evidence from resource rich economies. Econ Anal Policy. 2020;68:179-90. DOI: 10.1016/j.eap.2020.09.012. Search in Google Scholar

Sofuoğlu E, Kirikkaleli D. Towards achieving net zero emission targets and sustainable development goals, can long-term material footprint strategies be a useful tool? Environ Sci Pollut Res. 2022;30:26636-49. DOI: 10.1007/s11356-022-24078-2. Search in Google Scholar

Raihan A, Tuspekova A. Towards net zero emissions by 2050: the role of renewable energy, technological innovations, and forests in New Zealand. J Environ Sci Economics. 2023;2:1-16. DOI: 10.56556/jescae.v2i1.422. Search in Google Scholar

Esmaeili P, Balsalobre Lorente D, Anwar A. Revisiting the environmental Kuznetz curve and pollution haven hypothesis in N-11 economies: Fresh evidence from panel quantile regression. Environ Res. 2023;228:115844. DOI: 10.1016/j.envres.2023. 115844. Search in Google Scholar

Lee BCY, Lim FY, Loh WH, Ong SL, Hu J. Emerging contaminants: An overview of recent trends for their treatment and management using light-driven processes. Water (Basel). 2021;13:2340. DOI: 10.3390/w13172340. Search in Google Scholar

Puri M, Gandhi K, Kumar MS. Emerging environmental contaminants: A global perspective on policies and regulations. J Environ Manage. 2023;332:117344. DOI: 10.1016/j.jenvman.2023.117344. Search in Google Scholar

Prasad MNV, Elchuri SV. Pharmaceuticals and personal care products in the environment with emphasis on horizontal transfer of antibiotic resistance genes. Chem Didact Ecol Metrol. 2022;27:35-51. DOI: 10.2478/cdem-2022-0005. Search in Google Scholar

Hanun JN, Hassan F, Jiang J-J. Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: Influence of the weathering/aging process. J Environ Chem Eng. 2021;9:106290. DOI: 10.1016/j.jece.2021.106290. Search in Google Scholar

Pittura L, Gorbi S, León VM, Bellas J, Campillo González JA, Albentosa M, et al. Microplastics and nanoplastics in the marine environment. Contaminants of Emerging Concern in the Marine Environment. Elsevier; 2023. pp. 311-48. DOI: 10.1016/B978-0-323-90297-7.00004-4. Search in Google Scholar

Archer E, Holton E, Fidal J, Kasprzyk-Hordern B, Carstens A, Brocker L, et al. Occurrence of contaminants of emerging concern in the Eerste River, South Africa: Towards the optimisation of an urban water profiling approach for public- and ecological health risk characterisation. Sci Total Environ. 2023;859:160254. DOI: 10.1016/j.scitotenv.2022.160254. Search in Google Scholar

Arsand JB, Dallegrave A, Jank L, Feijo T, Perin M, Hoff RB, et al. Spatial-temporal occurrence of contaminants of emerging concern in urban rivers in southern Brazil. Chemosphere. 2023;311:136814. DOI: 10.1016/j.chemosphere.2022.136814. Search in Google Scholar

Roznere I, An V, Robinson T, Banda JA, Watters GT. Contaminants of emerging concern in the Maumee River and their effects on freshwater mussel physiology. PLoS ONE. 2023;18:e0280382. DOI: 10.1371/journal.pone.0280382. Search in Google Scholar

Campos S, Lorca J, Vidal J, Calzadilla W, Toledo-Neira C, Aranda M, et al. Removal of contaminants of emerging concern by solar photo electro-Fenton process in a solar electrochemical raceway pond reactor. Process Safety Environ Protect. 2023;169:660-70. DOI: 10.1016/j.psep.2022.11.033. Search in Google Scholar

Mohamed BA, Hamid H, Montoya-Bautista CV, Li LY. Circular economy in wastewater treatment plants: Treatment of contaminants of emerging concerns (CECs) in effluent using sludge-based activated carbon. J Clean Prod. 2023;389:136095. DOI: 10.1016/j.jclepro.2023.136095. Search in Google Scholar

Soker O, Hao S, Trewyn BG, Higgins CP, Strathmann TJ. Application of hydrothermal alkaline treatment to spent granular activated carbon: destruction of adsorbed PFASs and adsorbent regeneration. Environ Sci Technol Lett. 2023;10:425-30. DOI: 10.1021/acs.estlett.3c00161. Search in Google Scholar

Martín de Vidales MJ, Prieto R, Galán-Lucarelli G, Atanes-Sánchez E, Fernández-Martínez F. Removal of contaminants of emerging concern by photocatalysis with a highly ordered TiO2 nanotubular array catalyst. Catal Today. 2023;413-5: 113995. DOI: 10.1016/j.cattod.2023.01.002. Search in Google Scholar

Arun J, Nachiappan S, Rangarajan G, Alagappan RP, Gopinath KP, Lichtfouse E. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review. Environ Chem Lett. 2023;21:339-62. DOI: 10.1007/s10311-022-01503-z. Search in Google Scholar

Mahmoudnia A, Mehrdadi N, Baghdadi M, Moussavi G. Change in global PFAS cycling as a response of permafrost degradation to climate change. J Hazard Mater Adv. 2022;5:100039. DOI: 10.1016/j.hazadv.2021.100039. Search in Google Scholar

Xu B, Liu S, Zhou JL, Zheng C, Weifeng J, Chen B, et al. PFAS and their substitutes in groundwater: Occurrence, transformation and remediation. J Hazard Mater. 2021;412:125159. DOI: 10.1016/J.JHAZMAT.2021.125159. Search in Google Scholar

Available from: https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard. Search in Google Scholar

Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 2020;22:2345-73. DOI: 10.1039/D0EM00291G. Search in Google Scholar

Christensen BT, Calkins MM. Occupational exposure to per- and polyfluoroalkyl substances: a scope review of the literature from 1980-2021. J Expo Sci Environ Epidemiol. 2023. DOI: 10.1038/s41370-023-00536-y. Search in Google Scholar

Dal Ferro N, Pelliszaro A, Fant M, Zerlottin M, Borin M. Uptake and translocation of perfluoroalkyl acids by hydroponically grown lettuce and spinach exposed to spiked solution and treated wastewaters. Sci Total Environ. 2021;772:145523. DOI: 10.1016/j.scitotenv.2021.145523. Search in Google Scholar

Khan B, Burgess RM, Cantwell MG. Occurrence and bioaccumulation patterns of per- and polyfluoroalkyl substances (PFAS) in the marine environment. ACS EST Water. 2023;3:1243-59. DOI: 10.1021/acsestwater.2c00296. Search in Google Scholar

Washington JW, Rosal CG, McCord JP, Strynar MJ, Lindstrom AB, Bergman EL, et al. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science. 2020;368:1103-7. DOI: 10.1126/science.aba7127. Search in Google Scholar

Sun X, Yu W, Min L, Han L, Hua X, Shi J, et al. Synthesis, structural determination, and antifungal activity of novel fluorinated quinoline analogs. Molecules. 2023;28. DOI: 10.3390/molecules28083373. Search in Google Scholar

Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. Current contributions of organofluorine compounds to the agrochemical industry. iScience. 2020;23: 101467. DOI: 10.1016/j.isci.2020.101467. Search in Google Scholar

Inoue M, Sumii Y, Shibata N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega. 2020;5:10633-40. DOI: 10.1021/acsomega.0c00830. Search in Google Scholar

Evich MG, Davis MJB, McCord JP, Acrey B, Awkerman JA, Knappe DRU, et al. Per- and polyfluoroalkyl substances in the environment. Science. 1979;2022:375. DOI: 10.1126/science.abg9065. Search in Google Scholar

Gold SC, Wagner WE. Filling gaps in science exposes gaps in chemical regulation. Science. 2020;368:1066-8. DOI: 10.1126/science.abc1250. Search in Google Scholar

Xu Y, Nielsen C, Li Y, Hammarstrand S, Andersson EM, Li H, et al. Serum perfluoroalkyl substances in residents following long-term drinking water contamination from firefighting foam in Ronneby, Sweden. Environ Int. 2021;147:106333. DOI: 10.1016/j.envint.2020.106333. Search in Google Scholar

Smalling KL, Romanok KM, Bradley PM, Morriss MC, Gray JL, Kanagy LK, et al. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environ Int. 2023;108033. DOI: 10.1016/j.envint.2023.108033. Search in Google Scholar

Liu Y, Wosu AC, Fleisch AF, Dunlop AL, Starling AP, Ferrara A, et al. Associations of gestational perfluoroalkyl substances exposure with early childhood BMI z-Scores and risk of overweight/obesity: Results from the ECHO cohorts. Environ Health Perspect. 2023;131:67001. DOI: 10.1289/EHP11545. Search in Google Scholar

Taibl KR, Dunlop AL, Barr DB, Li Y-Y, Eick SM, Kannan K, et al. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nat Commun. 2023;14:3120. DOI: 10.1038/s41467-023-38710-3. Search in Google Scholar

Xu Y, Jakobsson K, Harari F, Andersson EM, Li Y. Exposure to high levels of PFAS through drinking water is associated with increased risk of type 2 diabetes - findings from a register-based study in Ronneby, Sweden. Environ Res. 2023;225:115525. DOI: 10.1016/J.ENVRES.2023.115525. Search in Google Scholar

Goodrich JA, Walker D, Lin X, Wang H, Lim T, McConnell R, et al. Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Reports. 2022;4:100550. DOI: 10.1016/j.jhepr.2022.100550. Search in Google Scholar

Available from: https://pfas-1.itrcweb.org/2-2-chemistry-terminology-and-acronyms/?print=pdf. Search in Google Scholar

Lu J, Lu H, Liang D, Feng S, Li Y, Li J. A review of the occurrence, monitoring, and removal technologies for the remediation of per- and polyfluoroalkyl substances (PFAS) from landfill leachate. Chemosphere. 2023;332:138824. DOI: 10.1016/j.chemosphere.2023.138824. Search in Google Scholar

Cardoso IMF, Pinto da Silva L, Esteves da Silva JCG. Nanomaterial-based advanced oxidation/reduction processes for the degradation of PFAS. Nanomaterials. 2023;13:1668. DOI: 10.3390/nano13101668. Search in Google Scholar

Meng Y, Chen G, Huang M. Piezoelectric materials: Properties, advancements, and design strategies for high-temperature applications. Nanomaterials. 2022;12:1171. DOI: 10.3390/nano12071171. Search in Google Scholar

Yang N, Yang S, Ma Q, Beltran C, Guan Y, Morsey M, et al. Solvent-free nonthermal destruction of PFAS chemicals and PFAS in sediment by piezoelectric ball milling. Environ Sci Technol Lett. 2023;10:198-203. DOI: 10.1021/acs.estlett.2c00902. Search in Google Scholar

Wang K, Han C, Li J, Qiu J, Sunarso J, Liu S. The mechanism of piezocatalysis: Energy band theory or screening charge effect? Angew Chemie. 2022;134. DOI: 10.1002/ange.202110429. Search in Google Scholar

Hasanuzzaman M, Prasad MNV. Handbook of Bioremediation: Physiological, Molecularand Biotechnological Interventions. 2021. DOI: 10.1016/B978-0-12-819382-2.09991-9. Search in Google Scholar

Harris JD, Coon CM, Doherty ME, McHugh EA, Warner MC, Walters CL, et al. Engineering and characterisation of dehalogenase enzymes from Delftia acidovorans in bioremediation of perfluorinated compounds. Synth Syst Biotechnol. 2022;7:671-6. DOI: 10.1016/j.synbio.2022.02.005. Search in Google Scholar

Marchetto F, Roverso M, Righetti D, Bogialli S, Filippini F, Bergantino E, et al. Bioremediation of per- and poly-fluoroalkyl substances (PFAS) by Synechocystis sp. PCC 6803: A chassis for a synthetic biology approach. Life. 2021;11:1300. DOI: 10.3390/life11121300. Search in Google Scholar

Li J, Li X, Da Y, Yu J, Long B, Zhang P, et al. Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework. Nat Commun. 2022;13:4368. DOI: 10.1038/s41467-022-31881-5. Search in Google Scholar

Zhu J, Wallis I, Guan H, Ross K, Whiley H, Fallowfield H. Juncus sarophorus, a native Australian species, tolerates and accumulates PFOS, PFOA and PFHxS in a glasshouse experiment. Sci Total Environ. 2022;826:154184. DOI: 10.1016/j.scitotenv.2022.154184. Search in Google Scholar

Awad J, Brunetti G, Juhasz A, Williams M, Navarro D, Drigo B, et al. Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. J Hazard Mater. 2022;429:128326. DOI: 10.1016/j.jhazmat.2022.128326. Search in Google Scholar

Amaro Bittencourt G, Vandenberghe LP de S, Martínez-Burgos WJ, Valladares-Diestra KK, Murawski de Mello AF, Maske BL, et al. Emerging contaminants bioremediation by enzyme and nanozyme-based processes - A review. iScience. 2023;26:106785. DOI: 10.1016/j.isci.2023.106785. Search in Google Scholar

Cousins IT, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ Sci Process Impacts. 2019;21:1803-15. DOI: 10.1039/C9EM00163H. Search in Google Scholar

Cousins IT, De Witt JC, Glüge J, Goldenman G, Herzke D, Lohmann R, et al. Finding essentiality feasible: common questions and misinterpretations concerning the “essential-use” concept. Environ Sci Process Impacts. 2021;23:1079-87. DOI: 10.1039/D1EM00180A. Search in Google Scholar

Scholz S, Brack W, Escher BI, Hackermüller J, Liess M, von Bergen M, et al. The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard and risk assessment. Arch Toxicol. 2022;96:2381-6. DOI: 10.1007/s00204-022-03313-2. Search in Google Scholar

Bǎlan SA, Andrews DQ, Blum A, Diamond ML, Fernández SR, Harriman E, et al. Optimising chemicals management in the United States and Canada through the essential-use approach. Environ Sci Technol. 2023;57:1568-75. DOI: 10.1021/acs.est.2c05932. Search in Google Scholar

Nason SL, Stanley CJ, PeterPaul CE, Blumenthal MF, Zuverza-Mena N, Silliboy RJ. A community based PFAS phytoremediation project at the former Loring Airforce Base. iScience. 2021;24:102777. DOI: 10.1016/j.isci.2021.102777. Search in Google Scholar

Manikandan A, Sathiyabama M. Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea. Int J Biol Macromol. 2016;84:58-61. DOI: 10.1016/j.ijbiomac.2015.11.083. Search in Google Scholar

Liang W, Yu A, Wang G, Zheng F, Hu P, Jia J, et al. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohydr Polym. 2018;199:437-44. DOI: 10.1016/j.carbpol.2018.07.042. Search in Google Scholar

Ale A, Andrade VS, Gutierrez MF, Bacchetta C, Rossi AS, Orihuela PS, et al. Nanotechnology-based pesticides: Environmental fate and ecotoxicity. Toxicol Appl Pharmacol. 2023;471:116560. DOI: 10.1016/j.taap.2023.116560. Search in Google Scholar

Grillo R, Fraceto LF, Amorim MJB, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J Hazard Mater. 2021;404:124148. DOI: 10.1016/j.jhazmat.2020.124148. Search in Google Scholar

Wang X, Xie H, Wang Z, He K, Jing D. Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environ Sci Nano. 2019;6:75-84. DOI: 10.1039/C8EN00902C. Search in Google Scholar

Jha AK, Chakraborty S. Environmental application of graphene and its forms for wastewater treatment: A sustainable solution toward improved public health. Appl Biochem Biotechnol. 2023. DOI: 10.1007/s12010-023-04381-5. Search in Google Scholar

Feba Mohan M, Praseetha PN. Prospects of biopolymers based nanocomposites for the slow and controlled release of agrochemicals formulations. J Inorg Organomet Polym Mater. 2023. DOI: 10.1007/s10904-023-02695-9. Search in Google Scholar

Jadhav C, Khillare LD, Bhosle MR. Efficient sonochemical protocol for the facile synthesis of dipyrimido-dihydropyridine and pyrimido[4,5-d]pyrimidines in aqueous β-cyclodextrin. Synth Commun. 2018;48:233-46. DOI: 10.1080/00397911.2017.1390685. Search in Google Scholar

Yin J, Su X, Yan S, Shen J. Multifunctional nanoparticles and nanopesticides in agricultural application. Nanomaterials. 2023;13:1255. DOI: 10.3390/nano 13071255. Search in Google Scholar

Giger M, Musselli I. Could global norms enable definition of sustainable farming systems in a transformative international trade system? Discover Sustain. 2023;4:18. DOI: 10.1007/s43621-023-00130-0. Search in Google Scholar

de Oliveira Neto JF, Candido LA, de Freitas Dourado AB, Santos SM, Florencio L. Waste of electrical and electronic equipment management from the perspective of a circular economy: A review. Waste Manage Res. 2023;41:760-80. DOI: 10.1177/0734242X221135341. Search in Google Scholar

Lase IS, Ragaert K, Dewulf J, De Meester S. Multivariate input-output and material flow analysis of current and future plastic recycling rates from waste electrical and electronic equipment: The case of small household appliances. Resour Conserv Recycl. 2021;174:105772. DOI: 10.1016/j.resconrec.2021.105772. Search in Google Scholar

Gulliani S, Volpe M, Messineo A, Volpe R. Recovery of metals and valuable chemicals from waste electric and electronic materials: A critical review of existing technologies. RSC Sustain. 2023. DOI: 10.1039/D3SU00034F. Search in Google Scholar

Cesiulis H, Tsyntsaru N. Eco-friendly electrowinning for metals recovery from waste electrical and electronic equipment (WEEE). Coatings. 2023;13:574. DOI: 10.3390/coatings13030574. Search in Google Scholar

Lebbie TS, Moyebi OD, Asante KA, Fobil J, Brune-Drisse MN, Suk WA, et al. E-waste in Africa: A serious threat to the health of children. Int J Environ Res Public Health. 2021;18:8488. DOI: 10.3390/ijerph18168488. Search in Google Scholar

Ozturk M, Metin M, Altay V, Prasad MNV, Gul A, Bhat RA, et al. Role of rare earth elements in plants. Plant Mol Biol Report. 2023. DOI: 10.1007/s11105-023-01369-7. Search in Google Scholar

Cheisson T, Schelter EJ. Rare earth elements: Mendeleev’s bane, modern marvels. Science. 2019;363:489-93. DOI: 10.1126/science.aau7628. Search in Google Scholar

Leducq J-B, Sneddon D, Santos M, Condrain-Morel D, Bourret G, Martinez-Gomez NC, et al. Comprehensive phylogenomics of methylobacterium reveals four evolutionary distinct groups and underappreciated phyllosphere diversity. Genome Biol Evol. 2022;14. DOI: 10.1093/gbe/evac123. Search in Google Scholar

Mattocks JA, Cotruvo JA, Deblonde GJ-P. Engineering lanmodulin’s selectivity for actinides over lanthanides by controlling solvent coordination and second-sphere interactions. Chem Sci. 2022;13:6054-66. DOI: 10.1039/d2sc01261h. Search in Google Scholar

Mattocks JA, Jung JJ, Lin C-Y, Dong Z, Yennawar NH, Featherston ER, et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature. 2023;618:87-93. DOI: 10.1038/s41586-023-05945-5. Search in Google Scholar

Ramprasad C, Gwenzi W, Chaukura N, Isyan Wan Azelee N, Upamali Rajapaksha A, Naushad M, et al. Strategies and options for the sustainable recovery of rare earth elements from electrical and electronic waste. Chem Eng J. 2022;442:135992. DOI: 10.1016/j.cej.2022.135992. Search in Google Scholar

Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front. 2019;10:1285-303. DOI: 10.1016/j.gsf.2018.12.005. Search in Google Scholar

Lahtela V, Hamod H, Kärki T. Assessment of critical factors in waste electrical and electronic equipment (WEEE) plastics on the recyclability: A case study in Finland. Sci Total Environ. 2022;830:155627. DOI: 10.1016/j.scitotenv.2022.155627. Search in Google Scholar

de Jonker M, Leonards PEG, Lamoree MH, Brandsma SH. A rapid screening method for the detection of additives in electronics and plastic consumer products using AP-MALDI-qTOF-MS. Toxics. 2023;11. DOI: 10.3390/toxics11020108. Search in Google Scholar

Shreyas Madhav A, Rajaraman R, Harini S, Kiliroor CC. Application of artificial intelligence to enhance collection of E-waste: A potential solution for household WEEE collection and segregation in India. Waste Management & Research: J Sustain Circular Economy. 2022;40:1047-53. DOI: 10.1177/0734242X211052846. Search in Google Scholar

Zhu P, Shen Y, Li X, Liu X, Qian G, Zhou J. Feeding preference of insect larvae to waste electrical and electronic equipment plastics. Sci Total Environ. 2022;807:151037. DOI: 10.1016/j.scitotenv.2021.151037 Search in Google Scholar

Yang X-G, Wen P-P, Yang Y-F, Jia P-P, Li W-G, Pei D-S. Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front Microbiol. 2023;13. DOI: 10.3389/fmicb.2022.1001750. Search in Google Scholar

Kye H, Kim J, Ju S, Lee J, Lim C, Yoon Y. Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon. 2023;9:e14359. DOI: 10.1016/j.heliyon.2023.e14359. Search in Google Scholar

Anand U, Dey S, Bontempi E, Ducoli S, Vethaak AD, Dey A, et al. Biotechnological methods to remove microplastics: a review. Environ Chem Lett. 2023;21:1787-810. DOI: 10.1007/s10311-022-01552-4. Search in Google Scholar

Kabir MS, Wang H, Luster-Teasley S, Zhang L, Zhao R. Microplastics in landfill leachate: Sources, detection, occurrence, and removal. Environ Sci Ecotechnol. 2023;16:100256. DOI: 10.1016/J.ESE.2023.100256. Search in Google Scholar

Wani AK, Akhtar N, Naqash N, Rahayu F, Djajadi D, Chopra C, et al. Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. Environ Sci Pollut Res. 2023. DOI: 10.1007/s11356-023-25192-5. Search in Google Scholar

Strokal M, Strokal V, Kroeze C. The future of the Black Sea: More pollution in over half of the rivers. Ambio. 2023;52:339-56. DOI: 10.1007/s13280-022-01780-6. Search in Google Scholar

Evans S, Campbell C, Naidenko OV. Analysis of cumulative cancer risk associated with disinfection byproducts in united states drinking water. Int J Environ Res Public Health. 2020;17:2149. DOI: 10.3390/ijerph17062149. Search in Google Scholar

Wright JM, Evans A, Kaufman JA, Rivera-Núñez Z, Narotsky MG. Disinfection by-product exposures and the risk of specific cardiac birth defects. Environ Health Perspect. 2017;125:269-77. DOI: 10.1289/EHP103. Search in Google Scholar

Wu M, Liang Y, Zhang Y, Xu H, Liu W. The effects of biodegradation on the characteristics and disinfection by-products formation of soluble microbial products chemical fractions. Environ Pollut. 2019;253:1047-55. DOI: 10.1016/j.envpol.2019.07.112. Search in Google Scholar

Liu W, Zhang Z, Yang X, Xu Y, Liang Y. Effects of UV irradiation and UV/chlorine co-exposure on natural organic matter in water. Sci Total Environ. 2012;414:576-84. DOI: 10.1016/j.scitotenv.2011.11.031. Search in Google Scholar

Richardson SD, Postigo C. Drinking Water Disinfection By-products. 2011. pp. 93-137. DOI: 10.1007/698_2011_125. Search in Google Scholar

von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003;37:1443-67. DOI: 10.1016/S0043-1354(02)00457-8. Search in Google Scholar

von Gunten U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003;37:1469-87. DOI: 10.1016/S0043-1354(02)00458-X. Search in Google Scholar

Westerhoff P, Song R, Amy G, Minear R. NOM’s role in bromine and bromate formation during ozonation. J Am Water Works Assoc. 1998;90:82-94. DOI: 10.1002/j.1551-8833.1998.tb08380.x. Search in Google Scholar

Heeb MB, Criquet J, Zimmermann-Steffens SG, von Gunten U. Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds - A critical review. Water Res. 2014;48:15-42. DOI: 10.1016/j.watres.2013.08.030. Search in Google Scholar

Sarma H, Islam NF, Prasad R, Prasad MNV, Ma LQ, Rinklebe J. Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR-Cas9 technology. J Hazard Mater. 2021;414:125493. DOI: 10.1016/j.jhazmat.2021.125493. Search in Google Scholar

Janakiraman N, Badrinarayanan L, Ratra D, Elchuri S V. One Health Approach for Eye Care. One Health. Wiley; 2023. pp. 221-41. DOI: 10.1002/9781119867333.ch17. Search in Google Scholar

Biswas JK, Mukherjee P, Vithanage M, Prasad MNV. Emergence and re‐emergence of emerging infectious diseases (EIDs). One Health. Wiley; 2023. pp. 19-37. DOI: 10.1002/9781119867333.ch2. Search in Google Scholar

Prasad MNV. Resource Recovery from Urban Flood, Municipal and Industrial Wastewaters in the Context Remediation Technologies and Circular Economy. 2023. pp. 103-20. DOI: 10.1007/978-3-031-18165-8_8. Search in Google Scholar

Prasad MNV. Microplastics - Global Scenario. Microplastics in the Ecosphere. Wiley; 2023. pp. 29-63. DOI: 10.1002/9781119879534.ch3. Search in Google Scholar

Gunarathne V, Vithanage M, Rinklebe J. Per‐ and Polyfluoroalkyl Substances (PFAS) Migration from Water to Soil-Plant Systems, Health Risks, and Implications for Remediation. In: Vithanage M, Prasad MNV, editors. One Health. Wiley; 2023. pp. 133-46. DOI: 10.1002/9781119867333.ch10. Search in Google Scholar

Wijesooriya M, Wijesekara H, Sewwandi M, Soysa S, Rajapaksha AU, Vithanage M, et al. Microplastics and Soil Nutrient Cycling. In: Vithanage M, Prasad M, editors. Microplastics in the Ecosphere. Wiley; 2023. pp. 321-38. DOI: 10.1002/9781119879534.ch19. Search in Google Scholar

Botha TL, Bamuza-Pemu E, Roopnarain A, Ncube Z, De Nysschen G, Ndaba B, et al. Development of a GIS-based knowledge hub for contaminants of emerging concern in South African water resources using open-source software: Lessons learnt. Heliyon. 2023;9:e13007. DOI: 10.1016/j.heliyon.2023.e13007. Search in Google Scholar

The world’s plan to make humanity sustainable is failing. Science can do more to save it. Nature. 2023;618:647. DOI: 10.1038/d41586-023-01989-9. Search in Google Scholar

How science can put the Sustainable Development Goals back on track. Nature. 2021;589:329-30. DOI: 10.1038/d41586-021-00104-0. Search in Google Scholar

Vulnerable nations lead by example on Sustainable Development Goals research. Nature. 2021;595:472. DOI: 10.1038/d41586-021-01992-y. Search in Google Scholar

Basu S, Rabara RC, Negi S, Shukla P. Engineering PGPMOs through gene editing and systems biology: a solution for phytoremediation? Trends Biotechnol. 2018;36:499-510. DOI: 10.1016/j.tibtech.2018.01.011. Search in Google Scholar

Sarma H, Islam NF, Prasad R, Prasad MNV, Ma LQ, Rinklebe J. Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR-Cas9 technology. J Hazard Mater. 2021;414:125493. DOI: 10.1016/j.jhazmat. 2021.125493. Search in Google Scholar

eISSN:
2084-4506
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Chemistry, other