1. bookAHEAD OF PRINT
Dettagli della rivista
License
Formato
Rivista
eISSN
2084-4506
Prima pubblicazione
17 Jan 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
access type Accesso libero

Study of Conceptual Knowledge and Mode of Reasoning Relating to the Characteristics of Covalent Bonds in Future Algerian Physics Teachers

Pubblicato online: 27 May 2022
Volume & Edizione: AHEAD OF PRINT
Pagine: -
Dettagli della rivista
License
Formato
Rivista
eISSN
2084-4506
Prima pubblicazione
17 Jan 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Abstract

In this study we tried to analyse how future teachers of Ecole Normale Supérieure (ENS) school who are at the end of education have integrated the specifications of covalent bonds in the different bond orders in terms of symmetry, stability, length, localisation (in the case of structures of ethane, ethylene and acetylene) or delocalisation of electrons (case of benzene). The analysis of responses to a written questionnaire shows that the majority of students have only integrated some knowledge, which may be termed as procedural, on the structural elements of molecules such as stability and the length of bonds. Although possessing some conceptual knowledge, students tend to use an alternative way of reasoning arising from the mental representation that single and multiple bonds are independent entities: the single bond is a “σ bond” while the double bond is considered only as a “π bond”.

Keywords

[1] Taber KS. Conceptual integration and science learners: do we expect too much? Invited seminar paper presented at the Centre for Studies in Science and Mathematics Education. University of Leeds, 2005;2. Available from: https://www.educ.cam.ac.uk/research/programmes/eclipse/CSSME2005.pdf. Search in Google Scholar

[2] Hiberty PC, Volatron F. La théorie de la liaison de valence. Bulletin de l’Union des Physiciens. 2003;97:7-25. Available from: http://www.lcpq.ups-tlse.fr/spip.php?article1431&lang=en. Search in Google Scholar

[3] Dumon A, Luft R. Naissance de la chimiestructurale. Paris: EDP Sciences; 2008. ISBN: 9782759800421. DOI:10.1051/978-2-7598-0349-1.10.1051/978-2-7598-0349-1 Search in Google Scholar

[4] Pauling L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. New York: Cornell University Press; 1940. ISBN: 9780801403330. DOI: 10.1002/jps.3030300111.10.1002/jps.3030300111 Search in Google Scholar

[5] Champagne AB, Klopfer LE, Desena A, Squires DA. Structural representations of student’s knowledge before and after science instruction. J Res Sci Teach. 1981;18:97-111. DOI: 10.1002/tea.3660180202.10.1002/tea.3660180202 Search in Google Scholar

[6] Turner M. La perspicacité et la mémoire. Conférencelue au Collège de France, à Paris. Available from: https://markturner.org/cdf/cdf3.html. Search in Google Scholar

[7] Winograd T. Frame Representations and the Procedural - Declarative Controversy. In: Bobrow D, Collins A, editors. Representation and Understanding: Studies in Cognitive Science. New York: Academic Press; 1975;185-210. ISBN:0121085503.DOI: 10.1016/B978-0-12-108550-6.50012-4.10.1016/B978-0-12-108550-6.50012-4 Search in Google Scholar

[8] Orange C. Problèmes et modélisation en biologie- quels apprentissages pour le lycée. Paris: PUF; 1997. ISBN: 2130484212. DOI: 10.7202/031977AR.10.7202/031977ar Search in Google Scholar

[9] Rushton GT, Hardy RC, Gwaltney KP, Lewis SE. Alternative conceptions of organic chemistry topics among fourth year chemistry students. Chem Educ Res Pract. 2008;9:122-30. DOI: 10.1039/B806228P.10.1039/B806228P Search in Google Scholar

[10] Cooper MM, Corley LM, Underwood SM. An investigation of college chemistry student’s understanding of structure-property relationships. J Res Sci Teach. 2013;50:699-721. DOI: 10.1002/tea.21093.10.1002/tea.21093 Search in Google Scholar

[11] Cooper MM, Grove N, Underwood SM, Klymkowsky MW. Lost in Lewis structure: an investigation of student difficulties in developing representational competence. J Chem Educ. 2010;87:869-74. DOI: 10.1021/ed900004y.10.1021/ed900004y Search in Google Scholar

[12] Cooper MM, Underwood SM, Hilley CZ. Development and validation of the implicit information from Lewis structures instrument (IILSI): do students connect structures with properties? Chem Educ Res Pract. 2012;(13):195-200. DOI: 10.1039/C2RP00010E.10.1039/C2RP00010E Search in Google Scholar

[13] Cooper MM, Underwood SM, Hilley CZ, Klymkowsky MW. Development and assessment of a molecular structure and properties learning progression. J Chem Educ. 2012;(89):1351-7. DOI: 10.1021/ed300083a.10.1021/ed300083a Search in Google Scholar

[14] Laszlo P. Describing reactivity with structural formulas, or when push comes to shove. Chem Educ Res Pract. 2002;3:113-8.DOI: 10.1039/B2RP90009B.10.1039/B2RP90009B Search in Google Scholar

[15] Bhattacharyya G, Bodner GM. It gets me to the product: how students propose organic mechanisms. J Chem Educ. 2005;82:1402-7. DOI: 10.1021/ed082p1402.10.1021/ed082p1402 Search in Google Scholar

[16] Ferguson R, Bodner GM. Making sense of the arrow-pushing formalism among chemistry majors enrolled in organic chemistry. Chem Educ Res Pract. 2008;9:102-13.DOI: 10.1039/b806225k.10.1039/B806225K Search in Google Scholar

[17] Kraft A, Strickland A, Bhattacharyya G. Reasonable reasoning: multivariate problem-solving in organic chemistry. Chem Educ Res Pract. 2010;11:281-92. DOI: 10.1039/C0RP90003F.10.1039/C0RP90003F Search in Google Scholar

[18] Barlet R, Plouin D. La dualité microscopique-macroscopique un obstacle sous jacent aux difficultés en chimie dans l’enseignement universitaire. Aster. 1997;25:143-74. DOI: 10.4267/2042/8683.10.4267/2042/8683 Search in Google Scholar

[19] Agrebi S. De la représentation symbolique au langage lors de l’apprentissage des mécanismes en chimie organique dans l’enseignement supérieur. PhD Thesis. Université de Lyon. 2004;2. Available from: http://theses.univ-lyon2.fr/documents/lyon2/2004/agrebi_s#p=0&a=top. Search in Google Scholar

[20] Hassan AK, Hill R, Reid N. Ideas underpinning success in an introductory course in organic chemistry. U Chem Educ. 2004;8:40-50. Available from: https://www.rsc.org/images/p2_reid_tcm18-31146.pdf. Search in Google Scholar

[21] Treagust DF. Students’ understanding of the descriptive and predictive nature of teaching models in organic chemistry. Res Sci Educ. 2004;34:1-20. DOI: 10.1023/B:RISE.0000020885.41497.ed.10.1023/B:RISE.0000020885.41497.ed Search in Google Scholar

[22] Gold M. Chemical education: an obsession with content. J Chem Educ. 1988;65:780-1. DOI: 10.1021/ed065p780.10.1021/ed065p780 Search in Google Scholar

[23] Zoller U. Students’ misunderstandings and misconceptions in college freshman chemistry (general and organic). J Res Sci Teach. 1990;27:883-903. DOI: 10.1002/tea.3660271011.10.1002/tea.3660271011 Search in Google Scholar

[24] Dumon A, Sauvaitre H. Comment les étudiants approprient-ils le modèle quantique de la liaison chimique? L’Actualité Chimique. 1995;1:13-22. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj24qit46z1AhWD8eAKHXy_BTYQFnoECAIQAQ&url=https%3A%2F%2Fnew.societechimiquedefrance.fr%2Fwpcontent%2Fuploads%2F2019%2F12%2F1995-192-dec-p77-index.pdf&usg=AOvVaw3EsP6pn0dvVnn8iTSAVo22. Search in Google Scholar

[25] Tsaparlis G. Atomic orbitals, molecular orbitals and related concepts: conceptual difficulties among chemistry students. Res Sci Educ. 1997;27:271-87. DOI: 10.1007/BF02461321.10.1007/BF02461321 Search in Google Scholar

[26] Taber KS. Building the structural concepts of chemistry: some consideration from educational research. Chem Educ Res Pract. 2001;2:123-58. DOI: 10.1039/B1RP90014E.10.1039/B1RP90014E Search in Google Scholar

[27] Taber KS. Conceptualising quanta: illuminating the ground state of student understanding of atomic orbitals. Chem Educ Res Pract. 2002;3:145-58. DOI: 10.1039/B2RP90012B.10.1039/B2RP90012B Search in Google Scholar

[28] Taber KS. Compounding quanta: probing the frontiers of student understanding of molecular orbitals. Chem Educ Res Pract. 2002;3:159-73. DOI: 10.1039/B2RP90013K.10.1039/B2RP90013K Search in Google Scholar

[29] Tsaparlis G, Papaphotis G. Quantum-chemical concepts: are they suitable for secondary students? Chem Educ Res Pract. 2002;3:129-44. DOI: 10.1039/B2RP90011D.10.1039/B2RP90011D Search in Google Scholar

[30] Nakiboglu C. Using word associations for assessing non major science students’ knowledge structure before and after general chemistry instruction: the case of atomic structure. Chem Educ Res Pract. 2008;9:309-22. DOI: 10.1039/B818466F.10.1039/B818466F Search in Google Scholar

[31] Papaphotis G, Tsaparlis G. Conceptual versus algorithmic learning in high school chemistry: the case of basic quantum chemical concepts. Part 1: Statistical analysis of a quantitative study. Chem Educ Res Pract. 2008;9:323-31. DOI: 10.1039/B818468M.10.1039/B818468M Search in Google Scholar

[32] Hazzi S, Dumon A. Conceptual integration of hybridisation by Algerian students intending to teach physical sciences. Chem Educ Res Pract. 2011;12:443-53. DOI: 10.1039/C1RP90049H.10.1039/C1RP90049H Search in Google Scholar

[33] Hazzi S, Dumon A. Conceptual integration of covalent bonds models by Algerian students. Chem Educ Res Pract. 2014;15:675-88. DOI: 10.1039/C4RP00041B.10.1039/C4RP00041B Search in Google Scholar

[34] Coll RK, Treagust DF. Exploring tertiary students’ understanding of covalent bonding. Res Sci Tech Educ. 2002;20:241-67. DOI: 10.1080/0263514022000030480.10.1080/0263514022000030480 Search in Google Scholar

[35] Bucat RB, Mocerino M. Learning at the sub-micro level: structural representations. In: Gilbert JK, Treagust D, editors. Multiple Representations in Chemical Education, Models and Modeling in Science Education. New York: Springer Verlag; 2009:11-30. DOI: 10.1007/978-1-4020-8872-8.10.1007/978-1-4020-8872-8 Search in Google Scholar

[36] Nordholm S, Bacskay GB. The basics of covalent bonding in terms of energy and dynamics. Molecules. 2020;25(11):2667. DOI: 10.3390/molecules25112667.10.3390/molecules25112667732112532521828 Search in Google Scholar

[37] Valence Bond Theory. 2020. Available from: https://chem.libretexts.org/@go/page/2002. Search in Google Scholar

[38] Tsaparlis G, Pantazi G, Pappa ET, Byers B. Using electrostatic potential maps as visual representations to promote better understanding of chemical bonding. Chem Teach Inter. 2021;3(4):391-411. DOI: 10.1515/cti-2021-0012.10.1515/cti-2021-0012 Search in Google Scholar

[39] Ilmah M, Yahmin Y, Muntholib M. Analysis of chemistry teachers’ covalent bond conceptual understanding through diagnostic interview technique. J-PEK. 2020;5(2):108-15. DOI: 10.17977/um026v5i22020p108.10.17977/um026v5i22020p108 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo