1. bookVolume 22 (2022): Edizione 4 (November 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1314-4081
Prima pubblicazione
13 Mar 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

A Robust Feature Construction for Fish Classification Using Grey Wolf Optimizer

Pubblicato online: 10 Nov 2022
Volume & Edizione: Volume 22 (2022) - Edizione 4 (November 2022)
Pagine: 152 - 166
Ricevuto: 08 Aug 2022
Accettato: 16 Sep 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
1314-4081
Prima pubblicazione
13 Mar 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Pramunendar, R. A., S. Wibirama, P. I. Santosa, P. N. Andono, M. A. Soeleman. A Robust Image Enhancement Techniques for Underwater Fish Classification in Marine Environment. – International Journal of Intelligent Engineering & Systems, Vol. 12, 2019, No 5, pp. 116-129.10.22266/ijies2019.1031.12 Search in Google Scholar

2. Salman, A., A. Jalal, F. Shafait, A. Mian, M. Shortis, J. Seager. Fish Species Classification in Unconstrained Underwater Environments Based on Deep Learning. – Limnology and Oceanography, Vol. 14, 2016, No 9, pp. 570-585.10.1002/lom3.10113 Search in Google Scholar

3. Huang, P. X., B. J. Boom, R. B. Fisher. Hierarchical Classification with Reject Option for Live Fish Recognition. – Machine Vision and Application, Vol. 26, 2015, No 1, pp. 89-102.10.1007/s00138-014-0641-2 Search in Google Scholar

4. Ogunlana, S. O., O. Olabode, S. A. A. Oluwadare, G. B. Iwasokun. Fish Classification Using Support Vector Machine. – African Journal of Computing & ICT, Vol. 8, 2015, No 2, pp. 75-82. Search in Google Scholar

5. Iscimen, B., Y. Kutlu, C. Turan. Classification of Fish Families Using Texture Analysis. – In: Proc. of 3rd International Symposium on EuroAsian Biodiversity, Vol. 3, 2017, p. 23. Search in Google Scholar

6. Tharwat, A., A. A. Hemedan, A. E. Hassanien, T. Gabel. A Biometric-Based Model for Fish Species Classification. – Fisheries Research, Vol. 204, August 2018, pp. 324-336.10.1016/j.fishres.2018.03.008 Search in Google Scholar

7. Navotas, I. C., C. N. V. Santos, E. J. M. Balderrama, F. E. B. Candido, A. J. E. Villacanas, J. S. Velasco. Fish Identification and Freshness Classification through Image Processing Using Artificial Neural Network. – ARPN Journal of Engineering and Applied Science, Vol. 13, 2018, No 18, pp. 4912-4922. Search in Google Scholar

8. Tran, C. T., M. Zhang, P. Andreae, B. Xue. Improving Performance for Classification with Incomplete Data Using Wrapper-Based Feature Selection. – Evol. Intell., Vol. 9, September 2016, No 3, pp. 81-94. DOI: 10.1007/s12065-016-0141-6. Apri DOISearch in Google Scholar

9. Zhao, H., A. P. Sinha, W. Ge. Effects of Feature Construction on Classification Performance: an Empirical Study in Bank Failure Prediction. – Expert Systems with Application, Vol. 36, 2009, No 2, pp. 2633-2644.10.1016/j.eswa.2008.01.053 Search in Google Scholar

10. Sondhi, P. Feature Construction Methods: A Survey. – In: Semantic Scholar. Sifaka. Cs. Uiuc. Edu. Vol. 69. 2010, pp. 70-71. Search in Google Scholar

11. Santosa, S., R. A. Pramunendar, D. P. Prabowo, Y. P. Santosa. Wood Types Classification Using Back-Propagation Neural Network Based on Genetic Algorithm with Gray Level Co-Occurrence Matrix for Features Extraction. – IAENG International Journal of Computer Science, Vol. 46, 2019, No 2, pp. 149-155. Search in Google Scholar

12. Neshatian, K., M. Zhang, M. Johnston. Feature Construction and Dimension Reduction Using Genetic Programming. – In: Australian Joint Conference on Artifical Inteligence AI 2007: Advances in Artificial Intelligence. LNAI, Vol. 4830. Berlin, Heidelberg, Springer, 2007, pp. 160-170. Search in Google Scholar

13. Tran, B., B. Xue, M. Zhang. Genetic Programming for Feature Construction and Selection in Classification on High-Dimensional Data. – Memetic Computing, Vol. 8, 2016, No 1, pp. 3-15.10.1007/s12293-015-0173-y Search in Google Scholar

14. Tran, C. T., M. Zhang, P. Andreae, B. Xue. Genetic Programming Based Feature Construction for Classification with Incomplete Data. – In: Proc. of Genetic and Evolutionary Computing Conference (GECCO’17), 2017, pp. 1033-1040.10.1145/3071178.3071183 Search in Google Scholar

15. Wang, D., D. Tan, L. Liu. Particle Swarm Optimization Algorithm: An Overview. – Soft Computing, Vol. 22, 2018, No 2, pp. 387-408.10.1007/s00500-016-2474-6 Search in Google Scholar

16. Fan, J., X. Chu, M. Hu, D. Yang. A Comparison Analysis of Swarm Intelligence Algorithms for Robot Swarm Learning. – In: Proc. of Winter Simulation Conference, 2017, pp. 3042-3053.10.1109/WSC.2017.8248025 Search in Google Scholar

17. Mirjalili, S., S. M. Mirjalili, A. Lewis. Grey Wolf Optimizer – Advance in Engineering Software, Vol. 69, March 2014, pp. 46-61.10.1016/j.advengsoft.2013.12.007 Search in Google Scholar

18. Hsiao, Y. H., C. C. Chen, S. I. Lin, F. P. Lin. Real-World Underwater Fish Recognition and Identification, Using Sparse Representation. – Ecological Informatics, Vol. 23, September 2014, pp. 13-21.10.1016/j.ecoinf.2013.10.002 Search in Google Scholar

19. Venkatesh, B., J. Anuradha. A Review of Feature Selection and Its Method. – Cybernetics and Information Technologies, Vol. 19, 2019, No 1, pp. 3-26.10.2478/cait-2019-0001 Search in Google Scholar

20. Ma, J., X. Gao. A Filter-Based Feature Construction and Feature Selection Approach for Classification Using Genetic Programming. – Knowledge-Based Systems, Vol. 196, 2020, pp. 1-14.10.1016/j.knosys.2020.105806 Search in Google Scholar

21. Akhiat, Y., Y. Manzali, M. Chahhou, A. Zinedine. A New Noisy Random Forest Based Method for Feature Selection. – Cybernetics and Information Technologies, Vol. 21, 2021, No 2, pp. 10-28.10.2478/cait-2021-0016 Search in Google Scholar

22. Chuang, M. C., J. N. Hwang, K. Williams. A Feature Learning and Object Recognition Framework for Underwater Fish Images. – IEEE Transaction on Image Processing, Vol. 25, 2016, No 4, pp. 1862-1872. Search in Google Scholar

23. Zhang, D., K. D. Lillywhite, D. J. Lee, B. J. Tippetts. Automatic Fish Taxonomy Using Evolution-Constructed Features for Invasive Species Removal. – Pattern Analysis and Applications, Vol. 18, 2015, No 2, pp. 451-459.10.1007/s10044-014-0426-2 Search in Google Scholar

24. Kamath, U., K. De Jong, A. Shehu. Effective Automated Feature Construction and Selection for Classification of Biological Sequences. – PLoS One, Vol. 9, 2014, No 7, pp. 1-14.10.1371/journal.pone.0099982410247525033270 Search in Google Scholar

25. Tran, C. T., P. Andreae, M. Zhang. Impact of Imputation of Missing Values on Genetic Programming Based Multiple Feature Construction for Classification. – In: Proc. of IEEE Congress on Evolutionary Computation, 2015, pp. 2398-2405.10.1109/CEC.2015.7257182 Search in Google Scholar

26. Hart, E., B. Gardiner, K. Sim, K. Kamimura. A Hybrid Method for Feature Construction and Selection to Improve Wind-Damage Prediction in the Forestry Sector. – In: Proc. of Genetic Evolutionary Computing Conference (GECCO’17), 2017, pp. 1121-1128.10.1145/3071178.3071217 Search in Google Scholar

27. Mahanipour, A., H. Nezamabadi-Pour, B. Nikpour. Using Fuzzy-Rough Set Feature Selection for Feature Construction Based on Genetic Programming. – In: Proc. of 3rd Conference on Swarm Intelligence and Evolutionarry Computing, 2018, pp. 1-6.10.1109/CSIEC.2018.8405407 Search in Google Scholar

28. Mahanipour, A., H. Nezamabadi-pour. A Multiple Feature Construction Method Based on Gravitational Search Algorithm. – Expert Systems with Applications, Vol. 127, August 2019, pp. 199-209.10.1016/j.eswa.2019.03.015 Search in Google Scholar

29. Ma, J., G. Teng. A Hybrid Multiple Feature Construction Approach for Classification Using Genetic Programming. – Applied Soft Computing, Vol. 80, July 2019, pp. 687-699.10.1016/j.asoc.2019.04.039 Search in Google Scholar

30. Toshev, A. Praticle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job Shop Scheduling Problem – Analysis of Test Results. – Cybernetics and Information Technologies, Vol. 19, 2019, No 4, pp. 26-44.10.2478/cait-2019-0034 Search in Google Scholar

31. Peng, B., S. Wan, Y. Bi, B. Xue, M. Zhang. Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinaey Fault Diagnosis. – IEEE Transaction on Cybernetics, Vol. 51, 2021, No 10, pp. 4909-4923.10.1109/TCYB.2020.303294533237874 Search in Google Scholar

32. Boom, B. J., P. X. Huang, J. He, R. B. Fisher. Supporting Ground-Truth Annotation of Image Datasets Using Clustering. – In: Proc. of 21st International Conference on Pattern Recognition, 2012, pp. 1542-1545. Search in Google Scholar

33. Pramunendar, R. A., S. Wibirama, P. I. Santosa. A Novel Approach for Underwater Image Enhancement Based on Improved Dark Channel Prior with Colour Correction. – Journal of Engineering Science and Rechnology, Vol. 13, 2018, No 10, pp. 3220-3237. Search in Google Scholar

34. Hammami, M., S. Bechikh, C. C. Hung, L. Ben Said. Weighted-Features Construction as a Bi-Level Problem. – In: Proc. of IEEE Congress on Evolutionary Computing (CEC’19), 2019, pp. 1604-1611.10.1109/CEC.2019.8790263 Search in Google Scholar

35. Mirjalili, A., A. Lewis. The Whale Optimization Algorithm. – Advances in Engineering Software, Vol. 95, May 2016, pp. 51-67.10.1016/j.advengsoft.2016.01.008 Search in Google Scholar

36. Skackauskas, J., T. Kalganova, I. Dear, M. Janakiram. Dynamic Impact for Ant Colony Optimization Algorithm. – Swarm Evolutionary Computing, Vol. 69, March 2022, pp. 1-12.10.1016/j.swevo.2021.100993 Search in Google Scholar

37. Al-Betar, M. A., M. A. Awadallah. Island Bat Algorithm for Optimization. – Expert Systems with Applications, Vol. 107, October 2018, pp. 126-145.10.1016/j.eswa.2018.04.024 Search in Google Scholar

38. Mirjalili, S. Dragonfly Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems. – Neural Computing with Applications, Vol. 27, 2016, No 4, pp. 1053-1073.10.1007/s00521-015-1920-1 Search in Google Scholar

39. Mirjalili, S. The Ant Lion Optimizer. – Advances in Engineering Software, Vol. 83, May 2015, pp. 80-98.10.1016/j.advengsoft.2015.01.010 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo