Accesso libero

Performance Optimization System for Hadoop and Spark Frameworks

, ,  e   
31 dic 2020
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

The optimization of large-scale data sets depends on the technologies and methods used. The MapReduce model, implemented on Apache Hadoop or Spark, allows splitting large data sets into a set of blocks distributed on several machines. Data compression reduces data size and transfer time between disks and memory but requires additional processing. Therefore, finding an optimal tradeoff is a challenge, as a high compression factor may underload Input/Output but overload the processor. The paper aims to present a system enabling the selection of the compression tools and tuning the compression factor to reach the best performance in Apache Hadoop and Spark infrastructures based on simulation analyzes.

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Informatica, Tecnologia informatica