Accesso libero

High order Finite Difference/Discontinuous Galerkin schemes for the incompressible Navier-Stokes equations with implicit viscosity

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. E. Ferrer and R. Willden, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, vol. 15, pp. 1787–1806, 1972. Search in Google Scholar

2. C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Computers and Fluids, vol. 1, pp. 73–100, 1973.10.1016/0045-7930(73)90027-3 Search in Google Scholar

3. A. Brooks and T. Hughes, Stream-line upwind/Petrov Galerkin formulstion for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation, Computer Methods in Applied Mechanics and Engineering, vol. 32, pp. 199–259, 1982.10.1016/0045-7825(82)90071-8 Search in Google Scholar

4. T. Hughes, M. Mallet, and M. Mizukami, A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Computer Methods in Applied Mechanics and Engineering, vol. 54, pp. 341–355, 1986.10.1016/0045-7825(86)90110-6 Search in Google Scholar

5. M. Fortin, Old and new finite elements for incompressible flows, International Journal for Numerical Methods in Fluids, vol. 1, pp. 347–364, 1981.10.1002/fld.1650010406 Search in Google Scholar

6. R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II, Numerische Mathematik, vol. 59, pp. 615–636, 1991.10.1007/BF01385799 Search in Google Scholar

7. J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes Problem. I. Regularity of solutions and second order error estimates for spatial discretization, SIAM Journal on Numerical Analysis, vol. 19, pp. 275–311, 1982.10.1137/0719018 Search in Google Scholar

8. J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes Problem. III. Smoothing property and higher order error estimates for spatial discretization, SIAM Journal on Numerical Analysis, vol. 25, pp. 489–512, 1988.10.1137/0725032 Search in Google Scholar

9. F. Harlow and J. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Physics of Fluids, vol. 8, pp. 2182–2189, 1965.10.1063/1.1761178 Search in Google Scholar

10. V. Patankar and B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, vol. 15, pp. 1787–1806, 1972.10.1016/0017-9310(72)90054-3 Search in Google Scholar

11. S. Patankar, Numerical heat transfer and fluid flow. New York: McGraw-Hill, 1980. Search in Google Scholar

12. J. van Kan, A second-order accurate pressure correction method for viscous incompressible flow, SIAM Journal on Scientific and Statistical Computing, vol. 7, pp. 870–891, 1986.10.1137/0907059 Search in Google Scholar

13. F. Bassi, A. Crivellini, D. D. Pietro, and S. Rebay, An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows, Computers and Fluids, vol. 36, pp. 1529–1546, 2007.10.1016/j.compfluid.2007.03.012 Search in Google Scholar

14. K. Shahbazi, P. F. Fischer, and C. R. Ethier, A high-order discontinuous galerkin method for the unsteady incompressible navier-stokes equations, Journal of Computational Physics, vol. 222, pp. 391–407, 2007.10.1016/j.jcp.2006.07.029 Search in Google Scholar

15. E. Ferrer and R. Willden, A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier-Stokes equations, Computer and Fluids, vol. 46, pp. 224–230, 2011.10.1016/j.compfluid.2010.10.018 Search in Google Scholar

16. N. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, Journal of Computational Physics, vol. 230, pp. 1147–1170, 2011.10.1016/j.jcp.2010.10.032 Search in Google Scholar

17. S. Rhebergen and B. Cockburn, A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, Journal of Computational Physics, vol. 231, pp. 4185–4204, 2012.10.1016/j.jcp.2012.02.011 Search in Google Scholar

18. S. Rhebergen, B. Cockburn, and J. J. van der Vegt, A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, Journal of Computational Physics, vol. 233, pp. 339–358, 2013.10.1016/j.jcp.2012.08.052 Search in Google Scholar

19. A. Crivellini, V. D’Alessandro, and F. Bassi, High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations, Computers and Fluids, vol. 81, pp. 122–133, 2013.10.1016/j.compfluid.2013.04.016 Search in Google Scholar

20. B. Klein, F. Kummer, and M. Oberlack, A SIMPLE based discontinuous Galerkin solver for steady incompressible flows, Journal of Computational Physics, vol. 237, pp. 235–250, 2013.10.1016/j.jcp.2012.11.051 Search in Google Scholar

21. A. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, vol. 2, pp. 12–26, 1967.10.1016/0021-9991(67)90037-X Search in Google Scholar

22. F. Bassi, A. Crivellini, D. D. Pietro, and S. Rebay, On a robust discontinuous Galerkin technique for the solution of compressible flow, Journal of Computational Physics, vol. 218, pp. 208–221, 2006.10.1016/j.jcp.2006.03.006 Search in Google Scholar

23. V. Casulli, Semi-implicit finite difference methods for the two–dimensional shallow water equations, J. Comp. Phys., vol. 86, pp. 56–74, 1990.10.1016/0021-9991(90)90091-E Search in Google Scholar

24. V. Casulli and R. Cheng, Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluids, vol. 15, pp. 629–648, 1992.10.1002/fld.1650150602 Search in Google Scholar

25. M. Tavelli and M. Dumbser, A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comp. Phys., vol. 319, pp. 294–323, 2016.10.1016/j.jcp.2016.05.009 Search in Google Scholar

26. U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., vol. 25, pp. 151–167, 1982.10.1016/S0168-9274(97)00056-1 Search in Google Scholar

27. S. Boscarino and L. Pareschi, On the asymptotic properties of IMEX Runge-Kutta schemes for hyperbolic balance laws, Journal of Computational and Applied Mathematics, vol. 316, pp. 60–73, 2017.10.1016/j.cam.2016.08.027 Search in Google Scholar

28. S. Boscarino and G. Russo, On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comput., vol. 31, pp. 1926–1945, 2009.10.1137/080713562 Search in Google Scholar

29. L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., vol. 25, pp. 129–155, 2005.10.1007/s10915-004-4636-4 Search in Google Scholar

30. S. Boscarino, L. Pareschi, and G. Russo, A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation, SIAM J. Numer. Anal., vol. 55, no. 4, pp. 2085–2109, 2017.10.1137/M1111449 Search in Google Scholar

31. W. Boscheri, G. Dimarco, R. Loubère, M. Tavelli, and M. Vignal, A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations, J. Comp. Phys., vol. 415, p. 109486, 2020.10.1016/j.jcp.2020.109486 Search in Google Scholar

32. W. Boscheri, G. Dimarco, and M. Tavelli, An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol. 374, p. 113602, 2021.10.1016/j.cma.2020.113602 Search in Google Scholar

33. V. DeCaria and M. Schneier, An embedded variable step IMEX scheme for the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol. 376, p. 113661, 2021.10.1016/j.cma.2020.113661 Search in Google Scholar

34. F. Meng, J. Banks, W. Henshaw, and D. Schwendeman, Fourth-order accurate fractional-step IMEX schemes for the incompressible Navier-Stokes equations on moving overlapping grids, Computer Methods in Applied Mechanics and Engineering, vol. 366, p. 113040, 2020.10.1016/j.cma.2020.113040 Search in Google Scholar

35. W. Wang, Z. Wang, and M. Mao, Linearly implicit variable step-size BDF schemes with Fourier pseudospectral approximation for incompressible Navier-Stokes equations, Applied Numerical Mathematics, vol. 172, pp. 393–412, 2022.10.1016/j.apnum.2021.10.019 Search in Google Scholar

36. A. Larios, L. G. Rebholz, and C. Zerfas, Global in time stability and accuracy of imex-fem data assimilation schemes for navier-stokes equations, Computer Methods in Applied Mechanics and Engineering, vol. 345, pp. 1077–1093, 2019.10.1016/j.cma.2018.09.004 Search in Google Scholar

37. W. Boscheri and L. Pareschi, High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers, J. Comp. Phys., vol. 434, p. 110206, 2021.10.1016/j.jcp.2021.110206 Search in Google Scholar

38. D. Levy, G. Puppo, and G. Russo, Central WENO schemes for hyperbolic systems of conservation laws, M2AN Math. Model. Numer. Anal., vol. 33, no. 3, pp. 547–571, 1999.10.1051/m2an:1999152 Search in Google Scholar

39. F. Fambri and M. Dumbser, Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids, Applied Numerical Mathematics, vol. 110, pp. 41–74, 2016.10.1016/j.apnum.2016.07.014 Search in Google Scholar

40. A. Stroud, Approximate Calculation of Multiple Integrals. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1971. Search in Google Scholar

41. V. Casulli, A semi-implicit finite difference method for non-hydrostatic free-surface flows, Int. J. Num. Meth. in Fluids, vol. 30, pp. 425–440, 1999.10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D Search in Google Scholar

42. B. Einfeldt, C. Munz, P. Roe, and B. Sjögreen, A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comp. Phys., vol. 341, pp. 341–376, 2017.10.1016/j.jcp.2017.03.030 Search in Google Scholar

43. S. Boscarino, F. Filbet, and G. Russo, High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations, J. Sci. Comput., vol. 68, pp. 975–1001, 2016.10.1007/s10915-016-0168-y Search in Google Scholar

44. C.-W. Shu, High-order finite difference and finite volume weno schemes and discontinuous galerkin methods for cfd, International Journal of Computational Fluid Dynamics, vol. 17, no. 2, pp. 107–118, 2003.10.1080/1061856031000104851 Search in Google Scholar

45. Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., vol. 7, pp. 856–869, 1986.10.1137/0907058 Search in Google Scholar

46. J. Bell, P. Coletta, and H. Glaz, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., vol. 85, pp. 257–283, 1989.10.1016/0021-9991(89)90151-4 Search in Google Scholar

47. M. Dumbser, I. Peshkov, E. Romenski, and O. Zanotti, High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids, Journal of Computational Physics, vol. 314, pp. 824–862, 2016.10.1016/j.jcp.2016.02.015 Search in Google Scholar

48. W. Boscheri, M.Dumbser, M.Ioriatti, I.Peshkov, and E.Romenski, A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics, Journal of Computational Physics, vol. 424, p. 109866, 2021.10.1016/j.jcp.2020.109866 Search in Google Scholar

49. U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using Navier-Stokes equations and multigrid method, Journal of Computational Physics, vol. 48, pp. 387–411, 1982.10.1016/0021-9991(82)90058-4 Search in Google Scholar

50. V. Casulli, A semi-implicit numerical method for the free-surface Navier-Stokes equations, Int. J. Numer. Methods Fluids, vol. 74, pp. 605–622, 2014.10.1002/fld.3867 Search in Google Scholar

51. W. Boscheri, A space-time semi-Lagrangian advection scheme on staggered Voronoi meshes applied to free surface flows, Computers & Fluids, vol. 202, p. 104503, 2020.10.1016/j.compfluid.2020.104503 Search in Google Scholar

52. M. Tavelli, W. Boscheri, G. Stradiotti, G. R. Pisaturo, and M. Righetti, A mass-conservative semi-implicit volume of fluid method for the navier-stokes equations with high order semi-lagrangian advection scheme, Computers and Fluids, p. 105443, 2022.10.1016/j.compfluid.2022.105443 Search in Google Scholar

eISSN:
2038-0909
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics