INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. J. Cahn, On spinodal decomposition, Acta Metallurgica, vol. 9, pp. 795–801, 1961.10.1016/0001-6160(61)90182-1 Search in Google Scholar

2. J. E. Hilliard and J. W. Cahn, Free energy of a non-uniform system. iii. nucleation in a two-component incompressible fluid, The Journal of Chemical Physics, vol. 31, pp. 688–699, 1959.10.1063/1.1730447 Search in Google Scholar

3. J. E. Hilliard and J. W. Cahn, Free energy of a non-uniform system. i. interfacial free energy, The Journal of Chemical Physics, vol. 28, pp. 258–267, 1958.10.1063/1.1744102 Search in Google Scholar

4. L. Q.-X., D. A., V. Rottschafer, M. de Jager, P. M. J. Herman, R. M., and J. Van de Koppel, Phase separation explains a new class of self-organized spatial patterns in ecological systems, Proceedings of the National Academy of Sciences of the USA, vol. 110, pp. 11905–11910, 2013. Search in Google Scholar

5. S. Tremaine, On the origin of irregular structure in saturn’s rings, The Astronomical Journal, vol. 125, pp. 894–901, 2003.10.1086/345963 Search in Google Scholar

6. S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini, Three-dimensional multispecies nonlinear tumor growth-i: Model and numerical method, Journal of Theoretical Biology, vol. 253, pp. 524–543, 2008.10.1016/j.jtbi.2008.03.027347266418485374 Search in Google Scholar

7. J. Huh, D. Jeong, J. Kim, D. Lee, J. Shin, and A. Yun, Physical, mathematical, and numerical derivations of the cahn-hilliard equation, Computational Materials Science, vol. 81, pp. 216–225, 2014.10.1016/j.commatsci.2013.08.027 Search in Google Scholar

8. A. Miranville, The cahn-hilliard equation and some of its variants, AIMS Mathematics, vol. 2, pp. 479–544, 2017.10.3934/Math.2017.2.479 Search in Google Scholar

9. E. Avalos, T. Higuchi, T. Teramoto, H. Yabu, and Y. Nishiura, Frustrated phases under three-dimensional confinement simulated by a set of coupled cahn-hilliard equations, Soft Matter, vol. 12, pp. 5905–5914, 2016. Search in Google Scholar

10. D. Eyre, An unconditionally stable one-step scheme for gradient systems. unpublished article, 1998. Search in Google Scholar

11. T. Teramoto and Y. Nishiura, Morphological characterization of the diblock copolymer problem with topological computation, Japan Journal of Industrial and Applied Mathematics, vol. 27, pp. 175–190, 2010.10.1007/s13160-010-0014-9 Search in Google Scholar

12. E. Avalos, T. Higuchi, T. Teramoto, H. Yabu, and Y. Nishiura, Electronic supplementary information for soft matter manuscript: Frustrated phases under three-dimensional confinement simulated by a set of coupled cahn-hilliard equations. Search in Google Scholar

13. T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, vol. 19, pp. 2621–2632, 1986. Search in Google Scholar

14. A. Quarteroni, Numerical models for di erential problems. Springer International Publishing, 2017. Search in Google Scholar

15. F. Guillen-Gonzales and G. Tierra, On linear schemes for a cahn-hilliard di use interface model, Journal of Computational Physics, vol. 234, pp. 140–171, 2013.10.1016/j.jcp.2012.09.020 Search in Google Scholar

16. X. Wu, G. Van Zwieten, and K. Van der Zee, Stabilized second-order convex splitting schemes for cahn-hilliard models with application to di use-interface tumor-growth models, International Journal for Numerical Methods in Biomedical Engineering., vol. 30, pp. 180–203, 2014.10.1002/cnm.259724023005 Search in Google Scholar

17. D. Eyre, Unconditionally gradient stable time marching the cahn-hilliard equation, MRS Proceedings, vol. 529, 1998.10.1557/PROC-529-39 Search in Google Scholar

eISSN:
2038-0909
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics