This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Childhood Acute Lymphoblastic Leukemia Treatment (PDQ®)-NCI. Available online: https://www.cancer. gov/types/leukemia/hp/child-all-treatment-pdq (accessed on 16.10.2024).Childhood Acute Lymphoblastic Leukemia Treatment (PDQ®)-NCI. Available online: https://www.cancer.gov/types/leukemia/hp/child-all-treatment-pdq (accessed on 16.10.2024).Search in Google Scholar
SEER*Explorer Application. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html?site=92&data_type=1&graph_ type=1&compareBy=sex&chk_sex_1=1&rate_ type=2&race=1&age_range=16&advopt_ precision=1&advopt_show_ci=on&hdn_ view=0&advopt_show_apc=on&advopt_ display=2#resultsRegion0 (accessed on 16.10.2024)SEER*Explorer Application. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html?site=92&data_type=1&graph_type=1&compareBy=sex&chk_sex_1=1&rate_type=2&race=1&age_range=16&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2#resultsRegion0 (accessed on 16.10.2024)Search in Google Scholar
Forero RM, Hernández M, Hernández-Rivas JM. Genetics of Acute Lymphoblastic Leukemia. In Leukemia. Prof. Margarita Guenova (Ed.); IntechOpen: London, UK, 2013; doi:10.5772/55504ForeroRMHernándezMHernández-RivasJM.Genetics of Acute Lymphoblastic Leukemia. In Leukemia. Prof. Margarita Guenova (Ed.); IntechOpen: London, UK, 2013; doi:10.5772/55504Open DOISearch in Google Scholar
Studd JB, Cornish AJ, Hoang PH, Law P, Kinnersley B, Houlston R. Cancer drivers and clonal dynamics in acute lymphoblastic leukaemia subtypes. Blood Cancer J. 2021;11(11):1-10. doi:10.1038/s41408-021-00570-9StuddJBCornishAJHoangPHLawPKinnersleyBHoulstonR.Cancer drivers and clonal dynamics in acute lymphoblastic leukaemia subtypes. Blood Cancer J. 2021;11(11):1-10. doi:10.1038/s41408-021-00570-9Open DOISearch in Google Scholar
Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology. 2012;2012(1):389-396. doi:10.1182/asheducation.V2012.1.389.3798360MullighanCG.The molecular genetic makeup of acute lymphoblastic leukemia. Hematology. 2012;2012(1):389-396. doi:10.1182/asheducation.V2012.1.389.3798360Open DOISearch in Google Scholar
Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015;125(26):3977-3987. doi:10.1182/blood-2015-02-580043HungerSPMullighanCG.Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015;125(26):3977-3987. doi:10.1182/blood-2015-02-580043Open DOISearch in Google Scholar
Woo JS, Alberti MO, Tirado CA. Childhood B-acute lymphoblastic leukemia: a genetic update. Exp. hema-tol. oncol. 2014;3(1):16. doi:10.1186/2162-3619-3-16WooJSAlbertiMOTiradoCA.Childhood B-acute lymphoblastic leukemia: a genetic update. Exp. hema-tol. oncol. 2014;3(1):16. doi:10.1186/2162-3619-3-16Open DOISearch in Google Scholar
Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. The Lancet. 2013;381(9881):1943-1955. doi:10.1016/S0140-6736(12)62187-4InabaHGreavesMMullighanCG.Acute lymphoblastic leukaemia. The Lancet. 2013;381(9881):1943-1955. doi:10.1016/S0140-6736(12)62187-4Open DOISearch in Google Scholar
Rob Pieters, Charles G. Mullighan, Stephen P. Hunger. Advancing Diagnostics and Therapy to Reach Universal Cure in Childhood ALL. J. Clin. Oncol. 2023;41:5579-5591. doi:10.1200/JCO.23.01286RobPietersCharlesG.Mullighan, Stephen P. Hunger. Advancing Diagnostics and Therapy to Reach Universal Cure in Childhood ALL. J. Clin. Oncol. 2023;41:5579-5591. doi:10.1200/JCO.23.01286Open DOISearch in Google Scholar
Chang TC, Chen W, Qu C, et al. Genomic Determinants of Outcome in Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2024;42(29):3491-3503. doi:10.1200/JCO.23.02238ChangTCChenWQuCGenomic Determinants of Outcome in Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2024;42(29):3491-3503. doi:10.1200/JCO.23.02238Open DOISearch in Google Scholar
Brady SW, Roberts KG, Gu Z, et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet. 2022;54(9):1376-1389. doi:10.1038/s41588-022-01159-zBradySWRobertsKGGuZThe genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet. 2022;54(9):1376-1389. doi:10.1038/s41588-022-01159-zOpen DOISearch in Google Scholar
Morscio J, Van Vlierberghe P. Chemotherapy at the wheel of ALL relapse. Blood. 2020;135(1):4-5. doi:10.1182/blood.2019003870MorscioJVan VlierbergheP.Chemotherapy at the wheel of ALL relapse. Blood. 2020;135(1):4-5. doi:10.1182/blood.2019003870Open DOISearch in Google Scholar
Mullighan CG, Phillips LA, Su X, et al. Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia. Science. 2008;322(5906):1377-1380. doi:10.1126/science.1164266MullighanCGPhillipsLASuXGenomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia. Science. 2008;322(5906):1377-1380. doi:10.1126/science.1164266Open DOISearch in Google Scholar
Zhang H, Wang H, Qian X, et al. Genetic mutational analysis of pediatric acute lymphoblastic leukemia from a single center in China using exon sequencing. BMC Cancer. 2020;20(1):211. doi:10.1186/s12885-020-6709-7ZhangHWangHQianXGenetic mutational analysis of pediatric acute lymphoblastic leukemia from a single center in China using exon sequencing. BMC Cancer. 2020;20(1):211. doi:10.1186/s12885-020-6709-7Open DOISearch in Google Scholar
Ueno H, Yoshida K, Shiozawa Y, et al. Landscape of driver mutations and their clinical impacts in pediatric B-cell precursor acute lymphoblastic leukemia. Blood Adv. 2020;4(20):5165. doi:10.1182/bloodad-vances.2019001307UenoHYoshidaKShiozawaYLandscape of driver mutations and their clinical impacts in pediatric B-cell precursor acute lymphoblastic leukemia. Blood Adv. 2020;4(20):5165. doi:10.1182/bloodad-vances.2019001307Open DOISearch in Google Scholar
van Dongen JJM, Langerak AW, Brüggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257-2317. doi:10.1038/sj.leu.2403202van DongenJJMLangerakAWBrüggemannMDesign and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257-2317. doi:10.1038/sj.leu.2403202Open DOISearch in Google Scholar
Krstevska Bozhinovikj E, Matevska-Geshkovska N, Stojovska M, et al. Presence of Minimal Residual Disease Determined by Next-Generation Sequencing Is Not a Reliable Prognostic Biomarker in Children with Acute Lymphoblastic Leukemia. Leuk Lymphoma 2024 (submitted) doi:10.22541/au.172536128.83797266/v1Krstevska BozhinovikjEMatevska-GeshkovskaNStojovskaMPresence of Minimal Residual Disease Determined by Next-Generation Sequencing Is Not a Reliable Prognostic Biomarker in Children with Acute Lymphoblastic Leukemia. Leuk Lymphoma2024 (submitted) doi:10.22541/au.172536128.83797266/v1Open DOISearch in Google Scholar
van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901-1928. doi:10.1038/sj.leu.240159van DongenJJMacintyreEAGabertJAStandardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901-1928. doi:10.1038/sj.leu.2401592Open DOISearch in Google Scholar
ALL IC-BFM 2009 A randomized trial of the I-BFM-SG for the management of childhood non-B acute lymphoblastic leukemia; Available online: https://ascopubs.org/doi/suppl/10.1200/JCO.22.01760/suppl_file/protocol1_jco.22.01760.pdf (accessed 16.10.2024)ALL IC-BFM2009A randomized trial of the I-BFM-SG for the management of childhood non-B acute lymphoblastic leukemia; Available online: https://ascopubs.org/doi/suppl/10.1200/JCO.22.01760/suppl_file/protocol1_jco.22.01760.pdf(accessed 16.10.2024).Search in Google Scholar
Stanulla M, Dagdan E, Zaliova M, et al. IKZF1p-lus Defines a New Minimal Residual Disease–Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2018;36(12):1240-1249. doi:10.1200/JCO.2017.74.3617StanullaMDagdanEZaliovaMIKZF1p-lus Defines a New Minimal Residual Disease–Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2018;36(12):1240-1249. doi:10.1200/JCO.2017.74.3617Open DOISearch in Google Scholar
Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012;120(6):1165-1174. doi:10.1182/blood-2012-05-378943PuiCHMullighanCGEvansWERellingMV.Pediatric acute lymphoblastic leukemia: where are we going and how do we get there?Blood. 2012;120(6):1165-1174. doi:10.1182/blood-2012-05-378943Open DOISearch in Google Scholar
Li B, Brady SW, Ma X, et al. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood. 2020;135(1):41-55. doi:10.1182/blood.2019002220LiBBradySWMaXTherapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood. 2020;135(1):41-55. doi:10.1182/blood.2019002220Open DOISearch in Google Scholar
Oshima K, Khiabanian H, da Silva-Almeida AC, et al. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2016;113(40):11306-11311. doi:10.1073/pnas.1608420113OshimaKKhiabanianHda Silva-AlmeidaACMutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2016;113(40):11306-11311. doi:10.1073/pnas.1608420113Open DOISearch in Google Scholar
Sayyab S, Lundmark A, Larsson M, et al. Mutational patterns and clonal evolution from diagnosis to relapse in pediatric acute lymphoblastic leukemia. Sci Rep. 2021;11(1):15988. doi:10.1038/s41598-021-95109-0SayyabSLundmarkALarssonMMutational patterns and clonal evolution from diagnosis to relapse in pediatric acute lymphoblastic leukemia. Sci Rep. 2021;11(1):15988. doi:10.1038/s41598-021-95109-0Open DOISearch in Google Scholar
Malinowska-Ozdowy K, Frech C, Schönegger A, et al. KRAS and CREBBP mutations: a relapse-linked malicious liaison in childhood high hyperdiploid acute lymphoblastic leukemia. Leukemia. 2015;29(8):1656-1667. doi:10.1038/leu.2015.107Malinowska-OzdowyKFrechCSchöneggerAKRAS and CREBBP mutations: a relapse-linked malicious liaison in childhood high hyperdiploid acute lymphoblastic leukemia. Leukemia. 2015;29(8):1656-1667. doi:10.1038/leu.2015.107Open DOISearch in Google Scholar
Zhu Y, Wang Z, Li Y, et al. The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. Cancers. 2023;15(4):1219. doi:10.3390/cancers15041219ZhuYWangZLiYThe Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. Cancers. 2023;15(4):1219. doi:10.3390/cancers15041219Open DOISearch in Google Scholar
Ramírez-Komo JA, Delaney MA, Straign D, et al. Spontaneous loss of B lineage transcription factors leads to pre-B leukemia in Ebf1+/–Bcl-xLTg mice. Oncogenesis. 2017;6(7):e355-e355. doi:10.1038/oncsis.2017.55Ramírez-KomoJADelaneyMAStraignDSpontaneous loss of B lineage transcription factors leads to pre-B leukemia in Ebf1+/–Bcl-xLTg mice. Oncogenesis. 2017;6(7):e355-e355. doi:10.1038/oncsis.2017.55Open DOISearch in Google Scholar
Yang JJ, Bhojwani D, Yang W, et al. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood. 2008;112(10):4178-4183. doi:10.1182/blood-2008-06-165027YangJJBhojwaniDYangWGenome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood. 2008;112(10):4178-4183. doi:10.1182/blood-2008-06-165027Open DOISearch in Google Scholar
Li X, Lin S, Liao N, et al. The RAS-signaling-pathway-mutation-related prognosis in B-cell acute lymphoblastic leukemia: A report from South China children’s leukemia group. Hematol. Oncol. 2024;42(3):e3265. doi:10.1002/hon.3265LiXLinSLiaoNThe RAS-signaling-pathway-mutation-related prognosis in B-cell acute lymphoblastic leukemia: A report from South China children’s leukemia group. Hematol. Oncol. 2024;42(3):e3265. doi:10.1002/hon.3265Open DOISearch in Google Scholar
Park KJ, Kim IS. Clinically actionable mutations identified in Korean patients with high-risk acute lymphoblastic leukemia. Ann Oncol. 2018;29:viii370-viii371. doi:10.1093/annonc/mdy286.036ParkKJKimIS.Clinically actionable mutations identified in Korean patients with high-risk acute lymphoblastic leukemia. Ann Oncol. 2018;29:viii370-viii371. doi:10.1093/annonc/mdy286.036Open DOISearch in Google Scholar
Vervoort BMT, Butler M, Grünewald KJT, et al. IKZF1 gene deletions drive resistance to cytarabine in B-cell precursor acute lymphoblastic leukemia. Haematologica. Published online June 6, 2024. doi:10.3324/haematol.2023.284357VervoortBMTButlerMGrünewaldKJTIKZF1 gene deletions drive resistance to cytarabine in B-cell precursor acute lymphoblastic leukemia. Haematologica. Published online June 6, 2024. doi:10.3324/haematol.2023.284357Open DOISearch in Google Scholar
Stanulla M, Cavé H, Moorman AV. IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood. 2020;135(4):252-260. doi:10.1182/blood.2019000813StanullaMCavéHMoormanAV.IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker?Blood. 2020;135(4):252-260. doi:10.1182/blood.2019000813Open DOISearch in Google Scholar
Feng J, Guo Y, Yang W, et al. Childhood Acute B-Lineage Lymphoblastic Leukemia With CDKN2A/B Deletion Is a Distinct Entity With Adverse Genetic Features and Poor Clinical Outcomes. Front Oncol. 2022;12. doi:10.3389/fonc.2022.878098FengJGuoYYangWChildhood Acute B-Lineage Lymphoblastic Leukemia With CDKN2A/B Deletion Is a Distinct Entity With Adverse Genetic Features and Poor Clinical Outcomes. Front Oncol. 2022;12. doi:10.3389/fonc.2022.878098Open DOISearch in Google Scholar
Ampatzidou M, Papadhimitriou SI, Paisiou A, et al. The Prognostic Effect of CDKN2A/2B Gene Deletions in Pediatric Acute Lymphoblastic Leukemia (ALL): Independent Prognostic Significance in BFM-Based Protocols. Diagnostics. 2023;13(9):1589. doi:10.3390/diagnostics13091589AmpatzidouMPapadhimitriouSIPaisiouAThe Prognostic Effect of CDKN2A/2B Gene Deletions in Pediatric Acute Lymphoblastic Leukemia (ALL): Independent Prognostic Significance in BFM-Based Protocols. Diagnostics. 2023;13(9):1589. doi:10.3390/diagnostics13091589Open DOISearch in Google Scholar
Oshima K, Zhao J, Pérez-Durán P, et al. Mutational and functional genetics mapping of chemotherapy resistance mechanisms in relapsed acute lymphoblastic leukemia. Nat Cancer. 2020;1(11):1113-1127. doi:10.1038/s43018-020-00124-1OshimaKZhaoJPérez-DuránPMutational and functional genetics mapping of chemotherapy resistance mechanisms in relapsed acute lymphoblastic leukemia. Nat Cancer. 2020;1(11):1113-1127. doi:10.1038/s43018-020-00124-1Open DOISearch in Google Scholar