INFORMAZIONI SU QUESTO ARTICOLO

Cita

Campbell SC, Lane BR. Malignant renal tumors. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell-Walsh Urology, 9th ed. (E-dition). Philadelphia, PA, USA: W.B. Saunders, 2011: 1413-1474.CampbellSCLaneBRMalignant renal tumorsInWeinAJKavoussiLRNovickACPartinAWPetersCAeditorsCampbell-Walsh Urology, 9th ed. (E-dition)Philadelphia, PA, USAW.B. Saunders201114131474Search in Google Scholar

Pécuchet N, Fournier LS, Oudard S. New insights into the management of renal cell cancer. Oncology. 2013; 84(1): 22-31.PécuchetNFournierLSOudardSNew insights into the management of renal cell cancerOncology2013841223110.1159/000342962Search in Google Scholar

De Luca A, Carotenuto P, D’Alessio A, Normanno N. Molecular biology of renal-cell carcinoma. Eur J Cancer Suppl. 2008; 6(14): 30-34.DeLuca ACarotenutoPD’AlessioANormannoNMolecular biology of renal-cell carcinomaEur J Cancer Suppl2008614303410.1016/j.ejcsup.2008.06.010Search in Google Scholar

Singer EA, Gupta GN, Marchalik D, Srinivasan R. Evolving therapeutic targets in renal cell carcinoma. Curr Opin Oncol. 2013; 25(3) :273-280.SingerEAGuptaGNMarchalikDSrinivasanREvolving therapeutic targets in renal cell carcinomaCurr Opin Oncol201325327328010.1097/CCO.0b013e32835fc857Search in Google Scholar

Ambros V. The functions of animal microRNAs. Nature. 2004; 431(7006): 350-355.AmbrosVThe functions of animal microRNAsNature2004431700635035510.1038/nature02871Search in Google Scholar

Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2): 281-297.BartelDPMicroRNAs: Genomics, biogenesis, mechanism, and functionCell2004116228129710.1016/S0092-8674(04)00045-5Search in Google Scholar

Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: A small world for fine-tuning gene expression. Mamm Genome. 2006; 17(3): 189-202.SevignaniCCalinGASiracusaLDCroceCMMammalian microRNAs: A small world for fine-tuning gene expressionMamm Genome200617318920210.1007/s00335-005-0066-3267963516518686Search in Google Scholar

Calin GA. MicroRNAs and cancer: What we know and what we still have to learn. Genome Med. 2009; 1(8): 78.CalinGAMicroRNAs and cancer: What we know and what we still have to learnGenome Med2009187810.1186/gm78276896419691821Search in Google Scholar

Long QZ, Du YF, Liu XG, Li X, He DL. miR-124 represses FZD5 to attenuate P-glycoprotein-mediated chemo-resistance in renal cell carcinoma. Tumour Biol. 2015; 36(9): 7017-7026.LongQZDuYFLiuXGLiXHeDLmiR-124 represses FZD5 to attenuate P-glycoprotein-mediated chemo-resistance in renal cell carcinomaTumour Biol20153697017702610.1007/s13277-015-3369-325861751Search in Google Scholar

Xu Q, Krause M, Samoylenko A, Vainio S. Wnt signaling in renal cell carcinoma. Cancers (Basel). 2016; 8(6): 57.XuQKrauseMSamoylenkoAVainioSWnt signaling in renal cell carcinomaCancers (Basel)2016865710.3390/cancers8060057493162227322325Search in Google Scholar

Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010; 31(5): 766-776.FurutaMKozakiKITanakaSAriiSImotoIInazawaJmiR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinomaCarcinogenesis201031576677610.1093/carcin/bgp25019843643Search in Google Scholar

An L, Liu Y, Wu A, Guan Y. microRNA-124 inhibits migration and invasion by down-regulating ROCK1 in glioma. PLoS One. 2013; 8(7): e69478.AnLLiuYWuAGuanYmicroRNA-124 inhibits migration and invasion by down-regulating ROCK1 in gliomaPLoS One201387e6947810.1371/journal.pone.0069478372072423936026Search in Google Scholar

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25(4): 402-408.LivakKJSchmittgenTDAnalysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) methodMethods200125440240810.1006/meth.2001.126211846609Search in Google Scholar

Butz H, Szabó PM, Khella HW, Nofech-Mozes R, Patocs A, Yousef GM. miRNA-target network reveals miR-124as a key miRNA contributing to clear cell renal cell carcinoma aggressive behaviour by targeting CAV1 and FLOT1. Oncotarget. 2015; 6(14): 12543-12557.ButzHSzabóPMKhellaHWNofech-MozesRPatocsAYousefGMmiRNA-target network reveals miR-124as a key miRNA contributing to clear cell renal cell carcinoma aggressive behaviour by targeting CAV1 and FLOT1Oncotarget2015614125431255710.18632/oncotarget.3815449495726002553Search in Google Scholar

Gebauer K, Peters I, Dubrowinskaja N, Hennenlotter J, Abbas M, Scherer R, et al. Hsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinoma. Br J Cancer. 2013; 108(1): 131-138.GebauerKPetersIDubrowinskajaNHennenlotterJAbbasMSchererRet alHsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinomaBr J Cancer2013108113113810.1038/bjc.2012.537355352923321515Search in Google Scholar

Sõber S, Laan M, Annilo T. MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem Biophys Res Commun. 2010; 391(1): 727-732.SõberSLaanMAnniloTMicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expressionBiochem Biophys Res Commun2010391172773210.1016/j.bbrc.2009.11.128280651819944075Search in Google Scholar

Zell S, Schmitt R, Witting S, Kreipe HH, Hussein K, Becker JU. Hypoxia induces mesenchymal gene expression in renal tubular epithelial cells: An in vitro model of kidney transplant fibrosis. Nephron Extra. 2013; 3(1): 50-58.ZellSSchmittRWittingSKreipeHHHusseinKBeckerJUHypoxia induces mesenchymal gene expression in renal tubular epithelial cells: An in vitro model of kidney transplant fibrosisNephron Extra201331505810.1159/000351046371100223898346Search in Google Scholar

Peng XH, Huang HR, Lu J, Liu X, Zhao FP, Zhang B, et al. MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Mol Cancer. 2014; 13: 186.PengXHHuangHRLuJLiuXZhaoFPZhangBet alMiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinomaMol Cancer20141318610.1186/1476-4598-13-186426715725098939Search in Google Scholar

Li L, Luo J, Wang B, Wang D, Xie X, Yuan L, et al. Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer. 2013: 12: 163.LiLLuoJWangBWangDXieXYuanLet alMicrorna-124 targets flotillin-1 to regulate proliferation and migration in breast cancerMol Cancer20131216310.1186/1476-4598-12-163402940724330780Search in Google Scholar

Li KK, Pang JC, Ching AK, Wong CK, Kong X, Wang Y, et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol. 2009; 40(9): 1234-1243.LiKKPangJCChingAKWongCKKongXWangYet almiR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1Hum Pathol20094091234124310.1016/j.humpath.2009.02.00319427019Search in Google Scholar

Shi Z, Chen Q, Li C, Wang L, Qian X, Jiang C, et al. MiR-124 governs glioma growth and angiogenesis and enhances chemosensitivity by targeting R-Ras and N-Ras. Neuro Oncol. 2014; 16(10): 1341-1353.ShiZChenQLiCWangLQianXJiangCet alMiR-124 governs glioma growth and angiogenesis and enhances chemosensitivity by targeting R-Ras and N-RasNeuro Oncol201416101341135310.1093/neuonc/nou084416542024861879Search in Google Scholar

eISSN:
1311-0160
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, other