Accesso libero

Genetic spectrum of neonatal diabetes

   | 23 mar 2021
INFORMAZIONI SU QUESTO ARTICOLO

Cita

Chiang JL, Maahs DM, Garvey KC, Hood KK, Laffel LM, Weinzimer SA, et al. Type 1 diabetes in children and adolescents: A position statement by th American Diabetes Association. Diabetes Care. 2018; 41(9): 2026- 2044.ChiangJLMaahsDMGarveyKCHoodKKLaffelLMWeinzimerSAet alType 1 diabetes in children and adolescents: A position statement by th American Diabetes AssociationDiabetes Care20184192026204410.2337/dci18-0023Search in Google Scholar

Tosur M, Geyer SM, Rodriguez H, Libman I, Baidal DA, Redondo MJ; Type 1 Diabetes TrialNet Study Group. Ethnic differences in progression of islet autoimmunity and type 1 diabetes in relatives at risk. Diabetologia. 2018; 61(9): 2043-2053.TosurMGeyerSMRodriguezHLibmanIBaidalDARedondoMJ; Type 1 Diabetes TrialNet Study GroupEthnic differences in progression of islet autoimmunity and type 1 diabetes in relatives at riskDiabetologia20186192043205310.1007/s00125-018-4660-9Search in Google Scholar

Patterson CC, Dahlquist G, Soltész G, Green A; EURODIAB ACE Study Group. Variation and trends in the incidence of childhood diabetes in Europe. Lancet. 2000; 355(9207):873-876.PattersonCCDahlquistGSoltészGGreenA; EURODIAB ACE Study GroupVariation and trends in the incidence of childhood diabetes in EuropeLancet2000355920787387610.1016/S0140-6736(99)07125-1Search in Google Scholar

Roark CL, Anderson KM, Simon LJ, Schuyler RP, Aubrey MT, Freed BM. Multiple HLA epitopes contribute to type 1 diabetes susceptibility. Diabetes. 2014; 63(1): 323-331.RoarkCLAndersonKMSimonLJSchuylerRPAubreyMTFreedBMMultiple HLA epitopes contribute to type 1 diabetes susceptibilityDiabetes201463132333110.2337/db13-1153Search in Google Scholar

Kocova M, Blagoevska M, Bogoevski M, Konstantinova M, Dorman J, Trucco M. HLA class II molecular typing in an European Slavic population with a low incidence of insulin-dependent diabetes mellitus. Tissue Antigens. 1995; 45(3): 216-219.KocovaMBlagoevskaMBogoevskiMKonstantinovaMDormanJTruccoMHLA class II molecular typing in an European Slavic population with a low incidence of insulin-dependent diabetes mellitusTissue Antigens199545321621910.1111/j.1399-0039.1995.tb02442.xSearch in Google Scholar

Platz P, Jakobsen BK, Morling N, Ryder LP, Svejgaard A, Thomsen M, et al.. HLA-D and -DR antigens in genetic analysis of insulin dependent diabetes mellitus. Diabetologia. 1981; 21(2): 108-115.PlatzPJakobsenBKMorlingNRyderLPSvejgaardAThomsenMet alHLA-D and -DR antigens in genetic analysis of insulin dependent diabetes mellitusDiabetologia198121210811510.1007/BF00251276Search in Google Scholar

Pociot F, Lenmark A. Genetic risk factors for type 1 diabetes. Lancet. 2016; 387(10035): 2331-2339.PociotFLenmarkAGenetic risk factors for type 1 diabetesLancet2016387100352331233910.1016/S0140-6736(16)30582-7Search in Google Scholar

Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep. 2011; 11(6): 532-542.NobleJAValdesAMGenetics of the HLA region in the prediction of type 1 diabetesCurr Diab Rep201111653254210.1007/s11892-011-0223-x323336221912932Search in Google Scholar

Patterson CC, Harjutsalo V, Rosenbauer J, Neu A, Cinek O, Skrivarhaug T, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 19892013: A mul-ticentre prospective registration study. Diabetologia. 2019; 62(3): 408-417.PattersonCCHarjutsaloVRosenbauerJNeuACinekOSkrivarhaugTet alTrends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 19892013: A mul-ticentre prospective registration studyDiabetologia201962340841710.1007/s00125-018-4763-330483858Search in Google Scholar

Qiu YH, Deng FY, Li MJ, Lei SF. Identification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis. J Diabetes Investig. 2014; 5(6): 649-656.QiuYHDengFYLiMJLeiSFIdentification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysisJ Diabetes Investig20145664965610.1111/jdi.12228423422725422764Search in Google Scholar

Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: Pathogenesis and treatment. Lancet. 2008; 371(9631): 2153-2156.StumvollMGoldsteinBJvanHaeften TWType 2 diabetes: Pathogenesis and treatmentLancet200837196312153215610.1016/S0140-6736(08)60932-0Search in Google Scholar

Unger RH. Reinventing type 2 diabetes: Pathogenesis, treatment, and prevention. JAMA. 2008; 299(10): 1185-1187.UngerRHReinventing type 2 diabetes: Pathogenesis, treatment, and preventionJAMA2008299101185118710.1001/jama.299.10.118518334695Search in Google Scholar

Fendler W, Borowiec M, Baranowska-Jazwiecka A, Szadkowska A, Skala-Zamorowska E, Deja G, et al. Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign. Diabetologia. 2012; 55(10): 2631-2635.FendlerWBorowiecMBaranowska-JazwieckaASzadkowskaASkala-ZamorowskaEDejaGet alPrevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaignDiabetologia201255102631263510.1007/s00125-012-2621-2343365722782286Search in Google Scholar

Irgens HU, Molnes J, Johansen BB, Rindal M, Skivarhaug T, Undlien D, et al. Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry. Diabetologia. 2013; 56(7): 1512-1519.IrgensHUMolnesJJohansenBBRindalMSkivarhaugTUndlienDet alPrevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes RegistryDiabetologia20135671512151910.1007/s00125-013-2916-y23624530Search in Google Scholar

Pihoker C, Gilliam LK, Ellard S, Dabelea D, Davis C, Dolan LM, et al. Prevalence, characteristics, and clinical diagnosis of maturity onset diabetes of the young due to mutations HNF1A, HNF4A, and glucokinase results from the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab. 2013; 98(10): 40554062.PihokerCGilliamLKEllardSDabeleaDDavisCDolanLMet alPrevalence, characteristics, and clinical diagnosis of maturity onset diabetes of the young due to mutations HNF1A, HNF4A, and glucokinase results from the SEARCH for Diabetes in YouthJ Clin Endocrinol Metab201398104055406210.1210/jc.2013-1279379062123771925Search in Google Scholar

Johanson BB, Irgens HU, Molnes J, Sztromwasser P, Aukrust I, Juliuson PB, et al. Targeted next generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia. 2017; 60(4): 625-635.JohansonBBIrgensHUMolnesJSztromwasserPAukrustIJuliusonPBet alTargeted next generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes RegistryDiabetologia201760462563510.1007/s00125-016-4167-127913849Search in Google Scholar

Delvecchio M, Mozzillo E, Salzano G, Iafusco D, Frontino G, Patera PI, et al. Monogenic diabetes accounts for 6.3 of cases referred to 15 Italian pediatric diabetes centers during 2007 to 2012. J Clin Endocrinol Metab. 2017; 102(6): 1826-1834.DelvecchioMMozzilloESalzanoGIafuscoDFrontinoGPateraPIet alMonogenic diabetes accounts for 6.3 of cases referred to 15 Italian pediatric diabetes centers during 2007 to 2012J Clin Endocrinol Metab201710261826183410.1210/jc.2016-249028323911Search in Google Scholar

Shepherd M, Shields B, Hammersley S, Hudson M, McDonald T, Colclough K, et al. Systematic population screening, using biomarkers and genetic testing identifies 2.5% of the UK pediatric diabetes population with monogenic diabetes. Diabetes Care. 2016; 39(11): 1879-1888.ShepherdMShieldsBHammersleySHudsonMMcDonaldTColcloughKet alSystematic population screening, using biomarkers and genetic testing identifies 2.5% of the UK pediatric diabetes population with monogenic diabetesDiabetes Care201639111879188810.2337/dc16-0645501839427271189Search in Google Scholar

Hattersley AT, Greenley AW, Polak M, Rubio-Cabezas O, Njolstad PR, Mlynarski W, et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2018; 19(Suppl 27): 47-63.HattersleyATGreenleyAWPolakMRubio-CabezasONjolstadPRMlynarskiWet alISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescentsPediatr Diabetes201819Suppl 27476310.1111/pedi.1277230225972Search in Google Scholar

Nansseu JRN, Ngo-Um SS, Balti EV. Incidence, prevalence and genetic determinants of neonatal diabetes mellitus: A systematic review and meta-analysis protocol. Syst Rev. 2016; 5(1): 188.NansseuJRNNgo-UmSSBaltiEVIncidence, prevalence and genetic determinants of neonatal diabetes mellitus: A systematic review and meta-analysis protocolSyst Rev20165118810.1186/s13643-016-0369-3510524927832816Search in Google Scholar

Jennings RE, Berry AA, Strutt JP, Gerrard DT, Hanley NA. Human pancreas development. Development. 2015; 142(18): 3126-3137.JenningsREBerryAAStruttJPGerrardDTHanleyNAHuman pancreas developmentDevelopment2015142183126313710.1242/dev.12006326395141Search in Google Scholar

Servitja JM, Ferrer J. Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia. 2004; 47(4): 597-613.ServitjaJMFerrerJTranscriptional networks controlling pancreatic development and beta cell functionDiabetologia200447459761310.1007/s00125-004-1368-915298336Search in Google Scholar

Polak M, Cavé H. Neonatal diabetes mellitus: A disease linked to multiple mechanisms. Orphanet J Rare Dis. 2007; 2: 12.PolakMCavéHNeonatal diabetes mellitus: A disease linked to multiple mechanismsOrphanet J Rare Dis200721210.1186/1750-1172-2-12184780517349054Search in Google Scholar

Aguilar-Bryan L, Bryan J. Neonatal diabetes mellitus. Endocr Rev. 2008; 29(3); 265-291.Aguilar-BryanLBryanJNeonatal diabetes mellitusEndocr Rev200829326529110.1210/er.2007-0029252885718436707Search in Google Scholar

Petruzelkova L, Dusatkova P, Cinek O, Sumnik Z, Pruhova S, Hardsky O, et al. Substantial proportion of MODY among multiplex families participating in a Type 1 diabetes prediction programme. Diabetic Med. 2016; 33(12): 1712-1716.PetruzelkovaLDusatkovaPCinekOSumnikZPruhovaSHardskyOet alSubstantial proportion of MODY among multiplex families participating in a Type 1 diabetes prediction programmeDiabetic Med201633121712171610.1111/dme.1304326641800Search in Google Scholar

Ellard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, Colclough K, et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia. 2013; 56(9): 1958-1963.EllardSLangoAllen HDeFranco EFlanaganSEHysenajGColcloughKet alImproved genetic testing for monogenic diabetes using targeted next-generation sequencingDiabetologia20135691958196310.1007/s00125-013-2962-5373743323771172Search in Google Scholar

Bansal V, Gassenhuber J, Phillips T, Oliveira G, Harbaugh R, Villarasa N, et al. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Medicine. 2017; 15(1): 213.BansalVGassenhuberJPhillipsTOliveiraGHarbaughRVillarasaNet alSpectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individualsBMC Medicine201715121310.1186/s12916-017-0977-3571783229207974Search in Google Scholar

Globa E, Zelinska N, Mackay DJG, Temple K, Houghton JAL, Hattersley AT, et al. Neonatal diabetes in Ukraine: Incidence, genetic, clinical phenotype and treatment. J Pediatr Endocrinol Metab. 2015; 28(11-12): 1279-1286.GlobaEZelinskaNMackayDJGTempleKHoughtonJALHattersleyATet alNeonatal diabetes in Ukraine: Incidence, genetic, clinical phenotype and treatmentJ Pediatr Endocrinol Metab20152811-121279128610.1515/jpem-2015-0170486000926208381Search in Google Scholar

Rubio-Cabezas O, Ellard S. Diabetes mellitus in neonates and infants: Genetic heterogeneity, clinical approach to diagnosis, and therpeutic options. Horm Res Paediatr. 2013; 80(3): 137-146.Rubio-CabezasOEllardSDiabetes mellitus in neonates and infants: Genetic heterogeneity, clinical approach to diagnosis, and therpeutic optionsHorm Res Paediatr201380313714610.1159/000354219388417024051999Search in Google Scholar

Nansseu JR, Ngo-Um SS, Balti EV. Incidence, prevalence and genetic determinants of neonatal diabetes mellitus: A systematic review and meta-analysis protocol. Syst Rev. 2016; 5(1): 188.NansseuJRNgo-UmSSBaltiEVIncidence, prevalence and genetic determinants of neonatal diabetes mellitus: A systematic review and meta-analysis protocolSyst Rev20165118810.1186/s13643-016-0369-3510524927832816Search in Google Scholar

Nagashima K, Tanaka D, Inagaaki N. Epidemiology, clinical chracteristics, and genetic etiology of neonatal diabetes in Japan. Pediatr Int. 2017; 59(2): 129-133.NagashimaKTanakaDInagaakiNEpidemiology, clinical chracteristics, and genetic etiology of neonatal diabetes in JapanPediatr Int201759212913310.1111/ped.1319927809389Search in Google Scholar

Huopio H, Miettinen PJ, Ilonen J, Nykanen P, Veijola R, Keskinen P, et al. Clinical, genetic, and biochemical characteristics of early-onset diabetes in the Finnish population. J Clin Endocrinol Metab. 2016; 101(8): 3018-3026.HuopioHMiettinenPJIlonenJNykanenPVeijolaRKeskinenPet alClinical, genetic, and biochemical characteristics of early-onset diabetes in the Finnish populationJ Clin Endocrinol Metab201610183018302610.1210/jc.2015-429627167055Search in Google Scholar

Cao B, Gong C, Wu D, Lu C, Liu F, Liu X, et al. Genetic analysis and follow-up of 25 neonatal diabetes mellitus patients in China. J Diabetes Res. 2016; 2016: 6314368.CaoBGongCWuDLuCLiuFLiuXet alGenetic analysis and follow-up of 25 neonatal diabetes mellitus patients in ChinaJ Diabetes Res20162016631436810.1155/2016/6314368470964326839896Search in Google Scholar

Blanco Lemelman M, Letourneau L, Greeley SAW. Neonatal diabetes mellitus: An update on diagnosis and managment. Clin Perinatol. 2018; 45(1): 41-59.BlancoLemelman MLetourneauLGreeleySAWNeonatal diabetes mellitus: An update on diagnosis and managmentClin Perinatol2018451415910.1016/j.clp.2017.10.006592878529406006Search in Google Scholar

Russo L, Iafusco D, Brescianini S, Nocerino V, Bizzarri C, Toni S, et al. Permanent diabetes mellitus during the first year of life: Multiple gene screening in 54 patients. Diabetologia. 2011; 54(7): 1693-1701.RussoLIafuscoDBrescianiniSNocerinoVBizzarriCToniSet alPermanent diabetes mellitus during the first year of life: Multiple gene screening in 54 patientsDiabetologia20115471693170110.1007/s00125-011-2094-8311027021544516Search in Google Scholar

von Mühlendah KE, Herkenhof H. Long-term course of neonatal diabetes. N Engl J Med. 1995; 333(11): 704-708.vonMühlendah KEHerkenhofHLong-term course of neonatal diabetesN Engl J Med19953331170470810.1056/NEJM1995091433311057637748Search in Google Scholar

Polak M, Cavé H. Neonatal diabetes mellitus: A disease linked to multiple mechanisms. Orphanet J Rare Dis. 2007; 2: 12.PolakMCavéHNeonatal diabetes mellitus: A disease linked to multiple mechanismsOrphanet J Rare Dis200721210.1186/1750-1172-2-12184780517349054Search in Google Scholar

Fösel S. Transient and permanent neonatal diabetes. Eur J Pediatr. 1995; 154(12): 944-948.FöselSTransient and permanent neonatal diabetesEur J Pediatr19951541294494810.1007/BF019586358801100Search in Google Scholar

Temple IK, Shield JPH. Transient neonatal diabetes, a disorder of imprinting. J Med Genet. 2002; 39(12): 872-875.TempleIKShieldJPHTransient neonatal diabetes, a disorder of imprintingJ Med Genet2002391287287510.1136/jmg.39.12.872175723312471198Search in Google Scholar

Naylor RN, Greeley SAW, Bell IGI, Philipson LH. Genetics and pathophysiology of neonatal diabetes mellitus. J Diabetes Investig. 2011; 2(3): 158-169.NaylorRNGreeleySAWBellIGIPhilipsonLHGenetics and pathophysiology of neonatal diabetes mellitusJ Diabetes Investig20112315816910.1111/j.2040-1124.2011.00106.x401491224843477Search in Google Scholar

Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield JP. Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes. 2000; 49(8): 1359-1366.TempleIKGardnerRJMackayDJBarberJCRobinsonDOShieldJPTransient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetesDiabetes20004981359136610.2337/diabetes.49.8.135910923638Search in Google Scholar

Gardner RJ, Mackay DJ, Mungall AL, Polychronakos C, Siebert R, Shield JP, et al. An imprinted locus associated with transient neonatal diabetes mellitus. Hum Mol Genet. 2000; 9(4): 589-596.GardnerRJMackayDJMungallALPolychronakosCSiebertRShieldJPet alAn imprinted locus associated with transient neonatal diabetes mellitusHum Mol Genet20009458959610.1093/hmg/9.4.58910699182Search in Google Scholar

Docherty LE, Kabwama S, Lehman A, Hawke E, Harrison L, Flanagan SF, et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia. 2013; 56(4): 758-762.DochertyLEKabwamaSLehmanAHawkeEHarrisonLFlanaganSFet alClinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patientsDiabetologia201356475876210.1007/s00125-013-2832-123385738Search in Google Scholar

Hermann R, Laine AP, Johansson C, Niederland T, TokarskaL, Dziatkowiak H, et al. Transient but not permanent neonatal diabetes mellitus is associated with paternal isodisomy of chromosome 6. Pediatrics. 2000; 105(1): 49-52.HermannRLaineAPJohanssonCNiederlandTTokarskaLDziatkowiak Het alTransient but not permanent neonatal diabetes mellitus is associated with paternal isodisomy of chromosome 6Pediatrics20001051495210.1542/peds.105.1.4910617703Search in Google Scholar

Whiteford ML, Narendra A, White MP, Cooke A, Wilkinson AG, Robertson KJ, et al. Paternal uniparental disomy for chromosome 6 causes transient diabetes mellitus. J Med Genet. 1997; 34(2): 167-168.WhitefordMLNarendraAWhiteMPCookeAWilkinsonAGRobertsonKJet alPaternal uniparental disomy for chromosome 6 causes transient diabetes mellitusJ Med Genet199734216716810.1136/jmg.34.2.16710508759039998Search in Google Scholar

Mackay D, Bens S, Perez de Nanclares G, Siebert R Temple K. Clinical utility gene card for: Transient neonatal diabetes mellitus, 6q24-related. Eur J Hum Genet. 2014; 22(9): doi: 10.1038/ejhg.2014.27. Epub 2014 Feb 26.MackayDBensSPerezde Nanclares GSiebertR Temple KClinical utility gene card for: Transient neonatal diabetes mellitus, 6q24-relatedEur J Hum Genet201422910.1038/ejhg.2014.27. Epub 2014 Feb 26Open DOISearch in Google Scholar

Mackay DJ, Boonen SE, Clayton-Smith J, Good-ship J, Hahnemann JMD, Kant SG, et al. A maternal hypo-methylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet. 2006; 120(2): 262-269.MackayDJBoonenSEClayton-SmithJGood-shipJHahnemannJMDKantSGet alA maternal hypo-methylation syndrome presenting as transient neonatal diabetes mellitusHum Genet2006120226226910.1007/s00439-006-0205-216816970Search in Google Scholar

Varrault A, Ciani E, Apiou F, Bilanges A, Hofmann A, Pantaloni C, et al. hZAC encodes a zink finger protein with antiproliferative properties and maps to a chromosomal region frequently lost in cancer. Natl Acad Sci USA. 1998; 95(15): 8835-8840.VarraultACianiEApiouFBilangesAHofmannAPantaloniCet alhZAC encodes a zink finger protein with antiproliferative properties and maps to a chromosomal region frequently lost in cancerNatl Acad Sci USA199895158835884010.1073/pnas.95.15.8835211639671765Search in Google Scholar

Touati A, Errea-Dorronsoro J, Nouri S, Halleb Y, Pereda A, Mahdhaoui N, et al. Transient neonatal diabetes mellitus and hypomethylation at additional imprinted loci: Novel ZFP57 mutation and review of the literature. Acta Diabetol. 2019; 56(3):301-307.TouatiAErrea-DorronsoroJNouriSHallebYPeredaAMahdhaouiNet alTransient neonatal diabetes mellitus and hypomethylation at additional imprinted loci: Novel ZFP57 mutation and review of the literatureActa Diabetol201956330130710.1007/s00592-018-1239-330315371Search in Google Scholar

Ma D, Shield JPH, Dean W, Leclerc I, Knauf C, Burcelin R, et al. Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J Clin Invest. 2004; 114(3): 339-348.MaDShieldJPHDeanWLeclercIKnaufCBurcelinRet alImpaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDMJ Clin Invest2004114333934810.1172/JCI200419876Search in Google Scholar

Sovik O, Aagenaes O, Eide SA, Mackay D, Temple IK, Molven A, et al. Familial occurrence of neonatal diabetes with duplications in chromosome 6q24: Treatment with and 40-yr follow-up. Pediatr Diabetes. 2012; 1(3): 155-162.SovikOAagenaesOEideSAMackayDTempleIKMolvenAet alFamilial occurrence of neonatal diabetes with duplications in chromosome 6q24: Treatment with and 40-yr follow-upPediatr Diabetes20121315516210.1111/j.1399-5448.2011.00776.xSearch in Google Scholar

Carmody D, Beca FA, Bell CD, Hwang JD, Dickens JT, Devine NA, et al. Role of noninsulin therapies alone or in combination in chromosome 6q24-related transient neonatal diabetes: Sulfonylurea improves but does not always normalize insulin secretion. Diabetes Care. 2015; 38(6): e86-e87.CarmodyDBecaFABellCDHwangJDDickensJTDevineNAet alRole of noninsulin therapies alone or in combination in chromosome 6q24-related transient neonatal diabetes: Sulfonylurea improves but does not always normalize insulin secretionDiabetes Care2015386e86e8710.2337/dc14-3056Search in Google Scholar

Yorifuji T, Kurokawa K, Mamada M, Imai T, Kawai M, Nishi Y, et al. Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: Phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1beta gene due to germline mosaicism. J Clin Endocrinol Metab. 2004; 89(6): 2905-2908.YorifujiTKurokawaKMamadaMImaiTKawaiMNishiYet alNeonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: Phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1beta gene due to germline mosaicismJ Clin Endocrinol Metab20048962905290810.1210/jc.2003-031828Search in Google Scholar

Garin I, Edghill EL, Akerman I, Rubio-Cabezas, O, Rica I, Locke JM, et al. Recessive mutations in INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci USA. 2010; 107(7): 3105-3110.GarinIEdghillELAkermanIRubio-CabezasORicaILockeJMet alRecessive mutations in INS gene result in neonatal diabetes through reduced insulin biosynthesisProc Natl Acad Sci USA201010773105311010.1073/pnas.0910533107Search in Google Scholar

Besser REJ, Flanagan SE, Mackay DGJ, Temple IK, Shepherd MH, Shields BM, et al. Prematurity and genetic testing for neonatal diabetes. Pediatrics. 2016; 138(3): 10.1542/peds.2015-3926 e20153926. doi: 10. 1542/peds.2015-3926. Epub 2016 Aug 18.BesserREJFlanaganSEMackayDGJTempleIKShepherdMHShieldsBMet alPrematurity and genetic testing for neonatal diabetesPediatrics20161383101542/peds.2015-3926 e2015392610. 1542/peds.2015-3926. Epub 2016 Aug 18Open DOISearch in Google Scholar

Stoy J, Edghill EL, Flanagan SF, Ye H, Paz VP, Pluzhnikov A, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA. 2007; 104(38): 15040-15044.StoyJEdghillELFlanaganSFYeHPazVPPluzhnikovAet alInsulin gene mutations as a cause of permanent neonatal diabetesProc Natl Acad Sci USA200710438150401504410.1073/pnas.0707291104Search in Google Scholar

John SA, Weiss JN, Xie LH, Ribalet B. Molecular mechanism for ATP-dependent closure of the K+ channel Kir6.2. J Physiol. 2003; 552(Pt 1): 23-34.JohnSAWeissJNXieLHRibaletBMolecular mechanism for ATP-dependent closure of the K+ channel Kir6.2J Physiol2003552Pt 1233410.1113/jphysiol.2003.048843Search in Google Scholar

De Franco E, Flanagan SF, Houghton JAL, Lango Allen H, Mackay DJG, Temple IK, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet. 2015; 386(9997): 957-963.DeFranco EFlanaganSFHoughtonJALLangoAllen HMackayDJGTempleIKet alThe effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort studyLancet2015386999795796310.1016/S0140-6736(15)60098-8Search in Google Scholar

Tinker A, Aziz Q, Li Y, Specterman M. ATP-Sensitive potassium channels and their physiological and pathophysiological roles. Compr Physiol. 2008; 8(4): 1463-1511.TinkerAAzizQLiYSpectermanMATP-Sensitive potassium channels and their physiological and pathophysiological rolesCompr Physiol2008841463151110.1002/cphy.c17004830215858Search in Google Scholar

Gloyn AL, Pearson ER, Antcliff LF, Proks P, Bruining GJ, Slingerland AS, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir 6.2 and permanent neonatal diabetes. N Engl J Med. 2004; 350(18): 1838-1849.GloynALPearsonERAntcliffLFProksPBruiningGJSlingerlandASet alActivating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir 6.2 and permanent neonatal diabetesN Engl J Med2004350181838184910.1056/NEJMoa03292215115830Search in Google Scholar

Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Eng J Med. 2006; 355(5): 456-466.BabenkoAPPolakMCavéHBusiahKCzernichowPScharfmannRet alActivating mutations in the ABCC8 gene in neonatal diabetes mellitusN Eng J Med2006355545646610.1056/NEJMoa05506816885549Search in Google Scholar

Achroft FM. ATP-sensitive potassium channelopathies: Focus on insulin secretion. J Clin Invest. 2005; 115(8): 2047-2058.AchroftFMATP-sensitive potassium channelopathies: Focus on insulin secretionJ Clin Invest200511582047205810.1172/JCI25495118054916075046Search in Google Scholar

Flanagan SF, Edghill EL, Glyon AL, Ellard S, Gattersley AT. Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia. 2006; 49(6): 1190-1197.FlanaganSFEdghillELGlyonALEllardSGattersleyATMutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotypeDiabetologia20064961190119710.1007/s00125-006-0246-z16609879Search in Google Scholar

Vaxillaire M, Populaire C, Busiah K, Cave H, Gloyn AL, Hattersley AT, et al. Kir 6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes. 2004; 53(10): 2719-2722.VaxillaireMPopulaireCBusiahKCaveHGloynALHattersleyATet alKir 6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patientsDiabetes200453102719272210.2337/diabetes.53.10.271915448107Search in Google Scholar

De Franco E, Saint Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, et al. Upadate of variants identified in the pancreatic β-cell KATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat. 2020; 41(5): 884-905.DeFranco ESaintMartin CBrusgaardKKnightJohnson AEAguilar-BryanLBowmanPet alUpadate of variants identified in the pancreatic β-cell KATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetesHum Mutat202041588490510.1002/humu.23995718737032027066Search in Google Scholar

Proks P, Arnold AL, Bruining J, Girard C, Flanagan SE, Larkin B, et al. A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Genet. 2006; 15(11): 1793-1800.ProksPArnoldALBruiningJGirardCFlanaganSELarkinBet alA heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetesHum Mol Genet200615111793180010.1093/hmg/ddl10116613899Search in Google Scholar

Flanagan SF, Patch AM, Mackay DJ, Edghill EL, Gloyn AL, Robinson D, et al. Mutations in ATP sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes. 2007; 56(7): 1930-1937.FlanaganSFPatchAMMackayDJEdghillELGloynALRobinsonDet alMutations in ATP sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthoodDiabetes20075671930193710.2337/db07-0043761181117446535Search in Google Scholar

Letoumeau LR, Carmody D, Wriblewski K, Denson AM, Sanyoura M, Rochelle N, et al. Diabetes presentation in infancy: High risk of diabetic ketoacidosis. Diabetes Care. 2017; 40(10): e147-e148.LetoumeauLRCarmodyDWriblewskiKDensonAMSanyouraMRochelleNet alDiabetes presentation in infancy: High risk of diabetic ketoacidosisDiabetes Care20174010e147e14810.2337/dc17-1145560630528779000Search in Google Scholar

Dahl A, Kumar S. Recent advances in neonatal diabetes. Diabetes, metabolic syndrome and obesity: Targets and therapy. Diabetes Metab Syndr Obes. 2020; 13: 355-364.DahlAKumarSRecent advances in neonatal diabetesDiabetes, metabolic syndrome and obesity: Targets and therapy. Diabetes Metab Syndr Obes20201335536410.2147/DMSO.S198932702479632104032Search in Google Scholar

Gloyn AL, Diatloff-Zito C, Edghill EL, Bellanné-Chantelot C, Nivot S, Coutan R, et al. KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur J Hum Genet. 2006; 14(7): 824-830.GloynALDiatloff-ZitoCEdghillELBellanné-ChantelotCNivotSCoutanRet alKCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological featuresEur J Hum Genet200614782483010.1038/sj.ejhg.520162916670688Search in Google Scholar

Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: New clinical syndromes, new scientific insights, and new therapy. Diabetes. 2005; 54(9): 2503-2513.HattersleyATAshcroftFMActivating mutations in Kir6.2 and neonatal diabetes: New clinical syndromes, new scientific insights, and new therapyDiabetes20055492503251310.2337/diabetes.54.9.2503Search in Google Scholar

Bowman P, Broadbridge E, Knight BA, Pettit L, Flanagan SE, Reville M, et al. Psychiatric morbidity in children with KCNJ 11 neonatal diabetes. Diabet Med. 2016; 33(10): 1387-1391.BowmanPBroadbridgeEKnightBAPettitLFlanaganSERevilleMet alPsychiatric morbidity in children with KCNJ 11 neonatal diabetesDiabet Med201633101387139110.1111/dme.13135Search in Google Scholar

Clark RH, McTaggart JS, Webster R, Knight BA, Pettit L, Flanagan SE, et al. Muscle disfunction caused by a KATP channel mutation in neonatal diabetes is neuronal in origin. Science. 2010; 329(5990): 458-461.ClarkRHMcTaggartJSWebsterRKnightBAPettitLFlanaganSEet alMuscle disfunction caused by a KATP channel mutation in neonatal diabetes is neuronal in originScience2010329599045846110.1126/science.1186146Search in Google Scholar

Carmody D, Pastore AN, Landmeier KA, Letourneau LR, Martin R, Hwang JL, et al. Patients with KC-NJ11-related diabetes frequently have neuropsychological impairment compared with sibling controls. Diabet Med. 2016; 33(10): 1380-1386.CarmodyDPastoreANLandmeierKALetourneauLRMartinRHwangJLet alPatients with KC-NJ11-related diabetes frequently have neuropsychological impairment compared with sibling controlsDiabet Med201633101380138610.1111/dme.13159Search in Google Scholar

Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SF, Larkin B, et al. Switching from insulin to oral sulfonylureas in paients with diabetes due to 6.2 mutations. N Engl J Med. 2006; 355(5): 467-477.PearsonERFlechtnerINjolstadPRMaleckiMTFlanaganSFLarkinBet alSwitching from insulin to oral sulfonylureas in paients with diabetes due to 6.2 mutationsN Engl J Med2006355546747710.1056/NEJMoa061759Search in Google Scholar

Rafiq M, Flanagen SE, Patch AM, Shields BM, Ellard S, Hattersley AT, et al. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care. 2008; 31(2): 204-209.RafiqMFlanagenSEPatchAMShieldsBMEllardSHattersleyATet alEffective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutationsDiabetes Care200831220420910.2337/dc07-1785Search in Google Scholar

Beltrand J, Elie C, Busiah K, Fournier E, Boddaert N, Bahi-Buisson N, et al.; GlidKir Study Group. Erratum. Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations. Diabetes Care. 2015; 38: 2033-2041.BeltrandJElieCBusiahKFournierEBoddaertNBahi-BuissonNet alGlidKir Study GroupErratum. Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations. Diabetes Care2015382033204110.2337/dc15-0837Search in Google Scholar

Bowman O, Sulen A, Barbetti F, Beltrand J, Svalastoga P, Codner E, et al. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: An international cohort study. Lancet Diabetes Endocrinol. 2018; 6(8): 637-646.BowmanOSulenABarbettiFBeltrandJSvalastogaPCodnerEet alEffectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: An international cohort studyLancet Diabetes Endocrinol20186863764610.1016/S2213-8587(18)30106-2Search in Google Scholar

Torbjornsdotter T, Marosvari-Barna T, Henckel E, Corrias E, Norgren M, Janson A. Successful treatment of a cohort of infants with neonatal diabetes using insulin pumps including data on genetics and estimated incidence. Acta Paediatr. 2020; 109(6): 1131-1137.TorbjornsdotterTMarosvari-BarnaTHenckelECorriasENorgrenMJansonASuccessful treatment of a cohort of infants with neonatal diabetes using insulin pumps including data on genetics and estimated incidenceActa Paediatr202010961131113710.1111/apa.1510031746017Search in Google Scholar

Greeley SA, Zielinski MC, Poudel A, Ye H, Berry S, Taxy JB, et al. Preservation of reduced numbers of insulin-positive cells in sulfonylurea-unresponsive KCNJ11-related diabetes. J Clin Endocrinol Metab. 2017; 102(1): 1-5.GreeleySAZielinskiMCPoudelAYeHBerrySTaxyJBet alPreservation of reduced numbers of insulin-positive cells in sulfonylurea-unresponsive KCNJ11-related diabetesJ Clin Endocrinol Metab201710211510.1210/jc.2016-2826541309227802092Search in Google Scholar

Taberner P, Flanagan SE, Mackay DJ, Ellard S, Taverna MJ, Ferraro M. Clinical and genetic features of Argentinian children with diabetes-onset before 12 months of age: Successful transfer from insulin to oral sulfonylurea. Diabetes Res Clin Pract. 2016; 117: 104-110. Doi.org/10.1016/j.diabres 2016.04.005TabernerPFlanaganSEMackayDJEllardSTavernaMJFerraroMClinical and genetic features of Argentinian children with diabetes-onset before 12 months of age: Successful transfer from insulin to oral sulfonylureaDiabetes Res Clin Pract2016117104110Doi.org/10.1016/j.diabres 2016.04.005Open DOISearch in Google Scholar

Polak M, Dechaume A, Cavé H, Nimri R, Crosnier H, Sulmont V, et al.; French ND (neonatal diabetes) Study Group. Heterozygous missense mutations in the insulin gene are linked to permanent diabetes appearing in the neonatal period or in early infancy: A report from the French ND (neonatal diabetes) study group. Diabetes. 2008; 57(4): 1115-1119.PolakMDechaumeACavéHNimriRCrosnierHSulmontVet alFrench ND (neonatal diabetes) Study GroupHeterozygous missense mutations in the insulin gene are linked to permanent diabetes appearing in the neonatal period or in early infancy: A report from the French ND (neonatal diabetes) study group. Diabetes20085741115111910.2337/db07-135818171712Search in Google Scholar

Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B, et al.; Neonatal Diabetes International Collaborative Group. Insulin mutation screening in 1044 patients with diabetes: Mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes. 2008; 57(4): 1034-1042.EdghillELFlanaganSEPatchAMBoustredCParrishAShieldsBet alNeonatal Diabetes International Collaborative GroupInsulin mutation screening in 1044 patients with diabetes: Mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes200857410341042Search in Google Scholar

Fu J, Wang T, Li M, Xiao X. Identification of insulin gene variants in patients with neonatal diabetes in the Chinese population. J Diabetes Investig. 2020; 11(3): 578-584.FuJWangTLiMXiaoXIdentification of insulin gene variants in patients with neonatal diabetes in the Chinese populationJ Diabetes Investig202011357858410.1111/jdi.13156723228231605659Search in Google Scholar

Matschinsky FM. Glucokinase, glucose homeostasis and diabetes mellitus. Curr Diab Rep. 2005; 5(3): 171-176. (Author: please see reference below)MatschinskyFMGlucokinase, glucose homeostasis and diabetes mellitusCurr Diab Rep200553171176(Author: please see reference below)10.1007/s11892-005-0005-415929862Search in Google Scholar

Lin DC, Huang CY, Ting WH, Lo FS, Lin CL, Yang HW, et al. Mutations in glucokinase and other genes detected in neonatal and type 1B diabetes patient using whole exome sequencing may lead to diseasecausing changes in protein activity. Biochim Biophys Acta. 2019; 1865(2): 428-433.LinDCHuangCYTingWHLoFSLinCLYangHWet alMutations in glucokinase and other genes detected in neonatal and type 1B diabetes patient using whole exome sequencing may lead to diseasecausing changes in protein activityBiochim Biophys Acta20191865242843310.1016/j.bbadis.2018.11.01330465894Search in Google Scholar

Njølstad PR, Søvik O, Cuesta-Muñoz A, Bjørkaug L, Massa O, Barbetti F, et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med. 2001; 344(21): 1588-1592.NjølstadPRSøvikOCuesta-MuñozABjørkaugLMassaOBarbettiFet alNeonatal diabetes mellitus due to complete glucokinase deficiencyN Engl J Med2001344211588159210.1056/NEJM20010524344210411372010Search in Google Scholar

Reis AF, Kannengiesser C, Jennane F, Manna TD, Cheurfa N, Oudin C, et al. Two novel mutations in the EIF2AK3 gene in children with Wolcott-Rallison syndrome. Pediatr Diabetes. 2011; 12(3 Pt 1): 187-191.ReisAFKannengiesserCJennaneFMannaTDCheurfaNOudinCet alTwo novel mutations in the EIF2AK3 gene in children with Wolcott-Rallison syndromePediatr Diabetes2011123 Pt 118719110.1111/j.1399-5448.2010.00679.x21518408Search in Google Scholar

Habener JF, Kemp DM, Thomas MK. Minireview: Transcriptional regulation in pancreatic development. Endocrinology. 2005; 146(3): 1025-1034.HabenerJFKempDMThomasMKMinireview: Transcriptional regulation in pancreatic developmentEndocrinology200514631025103410.1210/en.2004-157615604203Search in Google Scholar

Thornton CM, Carson DJ, Stewart FJ. Autopsy findings in Wolcott-Rallison syndrome. Pediatr Pathol Lab Med. 1997; 17(3): 487-496.ThorntonCMCarsonDJStewartFJAutopsy findings in Wolcott-Rallison syndromePediatr Pathol Lab Med199717348749610.1080/15513819709168589Search in Google Scholar

Sümegi A, Hendrik Z, Gáll T, Felszeghy E, Szakszon K, Antal-Szalamas P, et al. A novel splice site indel alteration in the EIF2AK3 gene is responsible for the first cases of Wolcott-Rallison syndrome in Hungary. BMC Med Genet. 2020; 21(1): 61. doi: 10.1186/s12881-020- 0985-6.SümegiAHendrikZGállTFelszeghyESzakszonKAntal-SzalamasPet alA novel splice site indel alteration in the EIF2AK3 gene is responsible for the first cases of Wolcott-Rallison syndrome in HungaryBMC Med Genet20202116110.1186/s12881-020- 0985-6Open DOISearch in Google Scholar

Welters A, Meissner T, Konrad K, Freiberg C, Warnicke K, Judmaier S, et al. Diabetes management in Wolcott-Rallison syndrome: analysis from the German/ Austrian DPV database. Orphanet J Rare Dis. 2020; 15(1): 100. doi: 10.1186/s13023-020-01359-y.WeltersAMeissnerTKonradKFreibergCWarnickeKJudmaierSet alDiabetes management in Wolcott-Rallison syndrome: analysis from the German/ Austrian DPV databaseOrphanet J Rare Dis202015110010.1186/s13023-020-01359-yOpen DOISearch in Google Scholar

Iver S, Korada M, Rainbow L, Kirk J, Brown RM, Shaw N, et al. Wolcott-Rallison syndrome: A clinical and genetic study of three children, novel mutation in EIF2AK3 and a review of the literature. Acta Paediatr. 2004; 93(9): 1195-1201.IverSKoradaMRainbowLKirkJBrownRMShawNet alWolcott-Rallison syndrome: A clinical and genetic study of three children, novel mutation in EIF2AK3 and a review of the literatureActa Paediatr20049391195120110.1111/j.1651-2227.2004.tb02748.xSearch in Google Scholar

Barrett TG, Bundey SE, Macleod AF. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet. 1995; 346(8988): 1458-1463.BarrettTGBundeySEMacleodAFNeurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndromeLancet199534689881458146310.1016/S0140-6736(95)92473-6Search in Google Scholar

Khanim F, Kirk J, Latif F, Barett TG. WFS1/ wolframin mutations, Wolfram syndrome, and associated diseases. Hum Muat. 2001; 17(5): 357-367.KhanimFKirkJLatifFBarettTGWFS1/ wolframin mutations, Wolfram syndrome, and associated diseasesHum Muat200117535736710.1002/humu.111011317350Search in Google Scholar

Marshall BA, Permutt MA, Paciorkowski AR, Paciorkowsky AR, Hoekel J, Karzon R, et al. Washington University Wolfram Study Group. Phenotypic characteristics of early Wolfram Sundrome. Orphanet J Rare Dis. 2013; 8: 64.MarshallBAPermuttMAPaciorkowskiARPaciorkowskyARHoekelJKarzonRet alWashington University Wolfram Study GroupPhenotypic characteristics of early Wolfram Sundrome. Orphanet J Rare Dis201386410.1186/1750-1172-8-64365129823981289Search in Google Scholar

Rigoli L, Bramanti P, Di Bella C, De Luca F. Genetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative disease. Pediatr Res. 2018; 83(5): 921-929.RigoliLBramantiPDiBella CDeLuca FGenetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative diseasePediatr Res201883592192910.1038/pr.2018.1729774890Search in Google Scholar

Bueno GE, Ruiz-Castañeda D, Martínez JR, Muñoz MR, Alascio PC. Natural history and clinical characteristics of 50 patients with Wolfram syndrome. Endocrine. 2018; 61(3): 440-446.BuenoGERuiz-CastañedaDMartínezJRMuñozMRAlascioPCNatural history and clinical characteristics of 50 patients with Wolfram syndromeEndocrine201861344044610.1007/s12020-018-1608-229728875Search in Google Scholar

Agakidis C, Agakidou E, Sarafidis K, Papoulidis I, Xinias I, Farmaki E. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome associated with a novel mutation of FOXP3 gene. Front Pediatr. 2019; 7: 20. doi: 10.3389/fped.2019.00020. eCollection 2019.AgakidisCAgakidouESarafidisKPapoulidisIXiniasIFarmakiEImmune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome associated with a novel mutation of FOXP3 geneFront Pediatr201972010.3389/fped.2019.00020. eCollection 2019Open DOISearch in Google Scholar

Yong PL, Russo P, Sullivan KE. Use of sirolimus in IPEX and IPEX-like chidren. J Clin Immunol. 2008; 28(5): 581-587.YongPLRussoPSullivanKEUse of sirolimus in IPEX and IPEX-like chidrenJ Clin Immunol200828558158710.1007/s10875-008-9196-118481161Search in Google Scholar

Alkorta-Aranburu G, Sukhanova M, Carmody D, Hoffman T, Wysinger L, Keller-Ramey J, et al. Improved molecular diagnosis of patients with neonatal diabetes using a combined next-generation sequencing and MS- approach. J Pediatr Endocrinol Metab. 2016; 29(5): 523-531.Alkorta-AranburuGSukhanovaMCarmodyDHoffmanTWysingerLKeller-RameyJet alImproved molecular diagnosis of patients with neonatal diabetes using a combined next-generation sequencing and MS- approachJ Pediatr Endocrinol Metab201629552353110.1515/jpem-2015-034126894574Search in Google Scholar

Letourneau LR, Greeley SAW. Precision medicine: Long-term treatment with sulfonylureas in patients with neonatal diabetes due to KKCNJ11 mutations. Curr Diab Rep. 2019; 19(8): 52.LetourneauLRGreeleySAWPrecision medicine: Long-term treatment with sulfonylureas in patients with neonatal diabetes due to KKCNJ11 mutationsCurr Diab Rep20191985210.1007/s11892-019-1175-9689416631250216Search in Google Scholar

Naylor R. Economics of genetic testing for diabetes. Curr Diab Rep. 2019; 19(5): 23.NaylorREconomics of genetic testing for diabetesCurr Diab Rep20191952310.1007/s11892-019-1140-7688670030919097Search in Google Scholar

Ma S, Viola R, Sui L, Cherubini V, Barbetti F, Egli D. β Cell replacement after gene editing of a neonatal diabetes causing mutation at the insulin locus. Stem Cell Reports. 2018; 11(6): 1407-1415.MaSViolaRSuiLCherubiniVBarbettiFEgliDβ Cell replacement after gene editing of a neonatal diabetes causing mutation at the insulin locusStem Cell Reports20181161407141510.1016/j.stemcr.2018.11.006629426230503261Search in Google Scholar

Yang Y, Chan L. Monogenic diabetes: What it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev. 2016; 37(3): 190-222.YangYChanLMonogenic diabetes: What it teaches us on the common forms of type 1 and type 2 diabetesEndocr Rev201637319022210.1210/er.2015-1116489026527035557Search in Google Scholar

eISSN:
1311-0160
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, other