INFORMAZIONI SU QUESTO ARTICOLO

Cita

Prosperetti A., Bubble phenomena in sound fields: part two, Ultrasonics 22, 115-123, 1984. Search in Google Scholar

Barbat T., Ashgriz N. and Liu C.S., Dynamics of two interacting bubbles in an acoustic field, J. Fluid Mech. 389, 137-168, 1999. Search in Google Scholar

Wang X., Chen W., Zhou M., Zhang Z. and Zhang L., Dynamics of double bubbles under the driving of burst ultrasound, Ultrasonics Sonochemistry, Vol. 84, 10595, 2022. Search in Google Scholar

Simaciu I., Borsos Z., Dumitrescu Gh., Silva G.T. and Bărbat T., Acoustic scattering-extinction cross section and the acoustic force of electrostatic type, arXiv:1711.03567, 2017. Search in Google Scholar

Simaciu I., Borsos Z. and Dumitrescu Gh., Acoustic gravitational interaction revised, arXiv:2206.00435v1, 2022. Search in Google Scholar

An Y., Formulation of multibubble cavitation, Physical Review E 83, 066313, 2011. Search in Google Scholar

Wang C.H. and Cheng J.C., Interaction of a bubble and a bubble cluster in an ultrasonic field, Chin. Phys. B, Vol. 22, No. 1, 014304, 2013 Search in Google Scholar

Simaciu I., Dumitrescu Gh. and Borsos Z., Mach’s Principle in the Acoustic World, arXiv: 1907.05713, 2019; Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Vol. 67 (71), No. 4, 59-69, 2021. Search in Google Scholar

Larraza A. and Denardo B., An acoustic Casimir effect, Phys. Lett. A, 248, 151, 1998. Search in Google Scholar

Bárcenas J., Reyes L. and Esquivel-Sirventa R., Acoustic Casimir pressure for arbitrary media, J. Acoust. Soc. Am. 116 (2), 2004. Search in Google Scholar

Larraza A., A demonstration apparatus for an acoustic analog to the Casimir effect, Am. J. Phys. 67, 1028, 1999. Search in Google Scholar

Jaskula J.C., Partridge G.B., Bonneau M., Lopes R., Ruaudel J., Boiron D. and Westbrook C.I., Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate, Phys. Rev. Lett., 109, 220401, 2012. Search in Google Scholar

Cui B., Ni B. and Wu Q., Bubble–bubble interaction effects on dynamics of multiple bubbles in a vortical flow field, Advances in Mechanical Engineering 8 (2), 2016. Search in Google Scholar

Narsing K. Jha and Govardhan R.N., Interaction of a vortex ring with a single bubble: Bubble and vorticity dynamics, Journal of Fluid Mechanics, Vol. 773, pp. 460-497, 2015. Search in Google Scholar

Wang Z., Uchiyama T. and Chena B., Numerical simulation of the interaction between vortex ring and bubble plume, Applied Mathematical Modelling, Vol. 37, Issue 24, pp.10007-10026, 2013. Search in Google Scholar

Zia R., Nazir A., Poortinga A.T. and van Nostrum C.F., Advances in antibubble formation and potential applications, Advances in Colloid and Interface Science, Volume 305, 102688, 2022. Search in Google Scholar

Dorbolo S., Caps H. and Vandewalle N., Fluid instabilities in the birth and death of antibubbles, New Journal of Physics, 5, 161, 2003. Search in Google Scholar

Simaciu I., Dumitrescu Gh., Borsos Z. and Brădac M., Interactions in an Acoustic World: Dumb Hole, Advances in High Energy Physics, Article ID 7265362, Volume 2018. Search in Google Scholar

Simaciu I., Dumitrescu Gh., Borsos Z. and Drafta V., Acoustic lens associated with a radial oscillating bubble, Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Vol. 66 (70), No. 2, pp. 9-15, 2020. Search in Google Scholar

Borsos Z., Simaciu I., Dumitrescu Gh. and Drafta V., Acoustic Black Hole Generated by a Cluster of Oscillating Bubbles, Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Volume 67(71), No. 4, pp. 89-96, 2021; arXiv:2007.04067v1. Search in Google Scholar

Feynman R.P., Leighton R.B. and Matthew S., The Feynman Lectures on Physics, vol 2, Massachusetts: Addison-Wesley, 1964. Search in Google Scholar

Griffiths D.J., Introduction to electrodynamics, 3rd ed., Prentice Hall, 1999. Search in Google Scholar

Doubochinski D. and Tennenbaum J., On the General Nature of Physical Objects and their Interactions, as Suggested by the Properties of Argumentally-Coupled Oscillating Systems, arXiv:0808.1205 Search in Google Scholar

Doinikov A., Acoustic radiation forces: Classical theory and recent advances, Recent Res. Devel. Acoustics, 1, 39-67, 2003. Search in Google Scholar

Simaciu I., Dumitrescu Gh. and Borsos Z., Acoustic force of the gravitational type, arXiv:1905.03622. Search in Google Scholar

Zavtrak S.T., A classical treatment of the long-range radiative interaction of small particles, Journal of Physics A: Mathematical and General, 1990, 23 9 1493-1499 Search in Google Scholar

Landau L.D., Lifshitz E.M., Mechanics, Volume 1, Second Edition, 1976. Search in Google Scholar

Eddington A.S., The internal constitution of the star, Cambridge Univ. Press, 1926. Search in Google Scholar

Landau L.D., Lifshitz E.M., Fluid Mechanics, Vol. 6, Third Rev. Ed., 1966. Search in Google Scholar

Leighton T.G., The Acoustic Bubble, The Journal of the Acoustical Society of America 96, 2616, 1994. Search in Google Scholar

Mettin R., Akhatov I., Parlitz U., Ohl C.D. and Lauterborn W., Bjerknes forces between small cavitation bubbles in a strong acoustic field, Physical Review E, Vol. 56, No 3, 1997. Search in Google Scholar

Ida M., A characteristic frequency of two mutually interacting gas bubbles in an acoustic field, Physics Letters A 297 210-217, 2002. Search in Google Scholar

Louisnard O., Analytical expressions for primary Bjerknes force on inertial cavitation bubbles, Phys. Rev. E, 2008, 78, 036322. Search in Google Scholar

Doinikov A.A. and Bouakaz A., Theoretical model for coupled radial and translational motion of two bubbles at arbitrary separation distances, Physical Review E, 92, 2015, 043001. Search in Google Scholar

Doinikov A.A., Gerlt M.S. and Dual J., Acoustic Radiation Forces Produced by Sharp-Edge Structures in Microfluidic Systems, Physical Review Letters 124, 154501, 2020. Search in Google Scholar

Combriat T., Rouby-Poizat F., Doinikov A.A., Stephan O. and Marmottant F., Acoustic interaction between 3D-fabricated cubic bubbles, Soft Matter, 16, 2829-2835, 2020. Search in Google Scholar

Yasui K., Multibubble Sonoluminescence from a Theoretical Perspective, Molecules, 26, 4624, 2021. Search in Google Scholar

Simaciu I., Borsos Z., Drafta V. and Dumitrescu Gh., Electrostatic Interaction in Stochastic Electrodynamics, arXiv:2106.04401v1, Bulletin of the Polytechnic Institute of Iași, Section Mathematics. Theoretical Mechanics. Physics, 2022, Volume 68 (72), No. 4, 29-40. Search in Google Scholar

eISSN:
2537-4990
Lingua:
Inglese