Accesso libero

Evolution and Diversity of Glycomolecules from Unicellular Organisms to Humans

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Varki A, Kornfeld S. Historical background and overview. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 1–20. VarkiA KornfeldS Historical background and overview In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 1 20 Search in Google Scholar

Fraser-Reid BO, Tatsuta K, Thiem J. Glycoscience: chemistry and chemical biology, 2nd Ed. Berlin; New York: Springer; 2008. Fraser-ReidBO TatsutaK ThiemJ Glycoscience: chemistry and chemical biology 2nd Ed. Berlin; New York Springer 2008 Search in Google Scholar

Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021;184: 3109–3124.e22. FlynnRA PedramK MalakerSA BatistaPJ SmithBAH JohnsonAG Small RNAs are modified with N-glycans and displayed on the surface of living cells Cell 2021 184 3109 3124.e22 Search in Google Scholar

Zhang N, Tang W, Torres L, Wang X, Ajaj Y, Zhu L, et al. Cell surface RNAs control neutrophil recruitment. Cell. 2024;187: 846–860.e17. ZhangN TangW TorresL WangX AjajY ZhuL Cell surface RNAs control neutrophil recruitment Cell 2024 187 846 860.e17 Search in Google Scholar

Wilson IBH, Paschinger K, Cummings RD, Aebi M. Nematoda. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 335–348. WilsonIBH PaschingerK CummingsRD AebiM Nematoda In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 335 348 Search in Google Scholar

Gagneux P, Panin V, Hennet T, Aebi M, Varki A. Evolution of glycan diversity. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 265–278. GagneuxP PaninV HennetT AebiM VarkiA Evolution of glycan diversity In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 265 278 Search in Google Scholar

Merry CLR, Lindahl U, Couchman J, Esko JD. Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 217–232. MerryCLR LindahlU CouchmanJ EskoJD Proteoglycans and sulfated glycosaminoglycans In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 217 232 Search in Google Scholar

Stanley P, Moremen KW, Lewis NE, Taniguchi N, Aebi M. N-Glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 103–116. StanleyP MoremenKW LewisNE TaniguchiN AebiM N-Glycans In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 103 116 Search in Google Scholar

Whitfield C, Szymanski CM, Lewis AL, Aebi M. Eubacteria. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 279–296. WhitfieldC SzymanskiCM LewisAL AebiM Eubacteria In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 279 296 Search in Google Scholar

Speciale I, Di Lorenzo F, Notaro A, Noel E, Agarkova I, Molinaro A, et al. N-glycans from Paramecium bursaria chlorella virus MA-1D: re-evaluation of the oligosaccharide common core structure. Glycobiology. 2022;32: 260–273. SpecialeI Di LorenzoF NotaroA NoelE AgarkovaI MolinaroA N-glycans from Paramecium bursaria chlorella virus MA-1D: re-evaluation of the oligosaccharide common core structure Glycobiology 2022 32 260 273 Search in Google Scholar

O’Neill MA, Darvill AG, Etzler ME, Mohnen D, Perez S, Mortimer JC, et al. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 319–334. O’NeillMA DarvillAG EtzlerME MohnenD PerezS MortimerJC In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 319 334 Search in Google Scholar

Paschinger K, Wols F, Yan S, Jin C, Vanbeselaere J, Dutkiewicz Z, et al. N-glycan antennal modifications are altered in Caenorhabditis elegans lacking the HEX-4 N-acetylgalactosamine-specific hexosaminidase. The Journal of Biological Chemistry. 2023;299: 103053. PaschingerK WolsF YanS JinC VanbeselaereJ DutkiewiczZ N-glycan antennal modifications are altered in Caenorhabditis elegans lacking the HEX-4 N-acetylgalactosamine-specific hexosaminidase The Journal of Biological Chemistry 2023 299 103053 Search in Google Scholar

Cummings RD. A periodic table of monosaccharides. Glycobiology. 2023: cwad088. CummingsRD A periodic table of monosaccharides Glycobiology 2023 cwad088 Search in Google Scholar

Imperiali B. Bacterial carbohydrate diversity – a Brave New World. Current Opinion in Chemical Biology. 2019;53: 1–8. ImperialiB Bacterial carbohydrate diversity – a Brave New World Current Opinion in Chemical Biology 2019 53 1 8 Search in Google Scholar

Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4: 759–767. LaineRA A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems Glycobiology 1994 4 759 767 Search in Google Scholar

Sackstein R, Hoffmeister KM, Stowell SR, Kinoshita T, Varki A, Freeze HH. Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 615–630. SacksteinR HoffmeisterKM StowellSR KinoshitaT VarkiA FreezeHH Glycans in acquired human diseases In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 615 630 Search in Google Scholar

Trujillo MN, Galligan JJ. Reconsidering the role of protein glycation in disease. Nature Chemical Biology. 2023;19: 922–927. TrujilloMN GalliganJJ Reconsidering the role of protein glycation in disease Nature Chemical Biology 2023 19 922 927 Search in Google Scholar

Schilling KM, Jorwal P, Ubilla-Rodriguez NC, Assafa TE, Gatdula JRP, Vultaggio JS, et al. N-glycosylation is a potent regulator of prion protein neurotoxicity. The Journal of Biological Chemistry. 2023;299: 105101. SchillingKM JorwalP Ubilla-RodriguezNC AssafaTE GatdulaJRP VultaggioJS N-glycosylation is a potent regulator of prion protein neurotoxicity The Journal of Biological Chemistry 2023 299 105101 Search in Google Scholar

Zhao X, Ma D, Ishiguro K, Saito H, Akichika S, Matsuzawa I, et al. Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Cell. 2023;186: 5517–5535.e24. ZhaoX MaD IshiguroK SaitoH AkichikaS MatsuzawaI Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth Cell 2023 186 5517 5535.e24 Search in Google Scholar

Wang S, Sun E, Liu Y, Yin B, Zhang X, Li M, et al. Landscape of new nuclease-containing antiphage systems in Escherichia coli and the counterdefense roles of bacteriophage T4 genome modifications. Journal of Virology. 2023;97: e0059923. WangS SunE LiuY YinB ZhangX LiM Landscape of new nuclease-containing antiphage systems in Escherichia coli and the counterdefense roles of bacteriophage T4 genome modifications Journal of Virology 2023 97 e0059923 Search in Google Scholar

Csoka AB, Stern R. Hypotheses on the evolution of hyaluronan: a highly ironic acid. Glycobiology. 2013;23: 398–411. CsokaAB SternR Hypotheses on the evolution of hyaluronan: a highly ironic acid Glycobiology 2013 23 398 411 Search in Google Scholar

DeAngelis PL. Microbial glycosaminoglycan glycosyltransferases. Glycobiology. 2002;12: 9R–16R. DeAngelisPL Microbial glycosaminoglycan glycosyltransferases Glycobiology 2002 12 9R 16R Search in Google Scholar

DeAngelis PL. Evolution of glycosaminoglycans and their glycosyltransferases: implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. The Anatomical Record. 2002;268: 317–326. DeAngelisPL Evolution of glycosaminoglycans and their glycosyltransferases: implications for the extracellular matrices of animals and the capsules of pathogenic bacteria The Anatomical Record 2002 268 317 326 Search in Google Scholar

Yamada S, Sugahara K, Ozbek S. Evolution of glycosaminoglycans: comparative biochemical study. Communicative and Integrative Biology. 2011;4: 150–158. YamadaS SugaharaK OzbekS Evolution of glycosaminoglycans: comparative biochemical study Communicative and Integrative Biology 2011 4 150 158 Search in Google Scholar

Dubrovin EV, Barinov NA, Ivanov DA, Klinov DV. Single-molecule AFM study of hyaluronic acid softening in electrolyte solutions. Carbohydrate Polymers. 2023;303: 120472. DubrovinEV BarinovNA IvanovDA KlinovDV Single-molecule AFM study of hyaluronic acid softening in electrolyte solutions Carbohydrate Polymers 2023 303 120472 Search in Google Scholar

LeWinter MM, Wu Y, Labeit S, Granzier H. Cardiac titin: structure, functions and role in disease. Clinica Chimica Acta. 2007;375: 1–9. LeWinterMM WuY LabeitS GranzierH Cardiac titin: structure, functions and role in disease Clinica Chimica Acta 2007 375 1 9 Search in Google Scholar

Lloyd KO, Yin BW, Kudryashov V. Isolation and characterization of ovarian cancer antigen CA 125 using a new monoclonal antibody (VK-8): identification as a mucin-type molecule. International Journal of Cancer. 1997;71: 842–850. LloydKO YinBW KudryashovV Isolation and characterization of ovarian cancer antigen CA 125 using a new monoclonal antibody (VK-8): identification as a mucin-type molecule International Journal of Cancer 1997 71 842 850 Search in Google Scholar

Das S, Batra SK. Understanding the unique attributes of MUC16 (CA125): potential implications in targeted therapy. Cancer Research. 2015;75: 4669–4674. DasS BatraSK Understanding the unique attributes of MUC16 (CA125): potential implications in targeted therapy Cancer Research 2015 75 4669 4674 Search in Google Scholar

Higuchi T, Orita T, Nakanishi S, Katsuya K, Watanabe H, Yamasaki Y, et al. Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney. The Journal of Biological Chemistry. 2004;279: 1968–1979. HiguchiT OritaT NakanishiS KatsuyaK WatanabeH YamasakiY Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney The Journal of Biological Chemistry 2004 279 1968 1979 Search in Google Scholar

Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, Albrecht R, et al. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Molecular Cancer. 2014;13: 129. FelderM KapurA Gonzalez-BosquetJ HoribataS HeintzJ AlbrechtR MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress Molecular Cancer 2014 13 129 Search in Google Scholar

Johansson ME, Ambort D, Pelaseyed T, Schutte A, Gustafsson JK, Ermund A, et al. Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences. 2011;68: 3635–3641. JohanssonME AmbortD PelaseyedT SchutteA GustafssonJK ErmundA Composition and functional role of the mucus layers in the intestine Cellular and Molecular Life Sciences 2011 68 3635 3641 Search in Google Scholar

Radicioni G, Cao R, Carpenter J, Ford AA, Wang T, Li L, et al. The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome. Mucosal Immunology. 2016;9: 1442–1454. RadicioniG CaoR CarpenterJ FordAA WangT LiL The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome Mucosal Immunology 2016 9 1442 1454 Search in Google Scholar

Tan S, Cheng PW. Mucin biosynthesis: identification of the cis-regulatory elements of human C2GnT-M gene. American Journal of Respiratory Cell and Molecular Biology. 2007;36: 737–745. TanS ChengPW Mucin biosynthesis: identification of the cis-regulatory elements of human C2GnT-M gene American Journal of Respiratory Cell and Molecular Biology 2007 36 737 745 Search in Google Scholar

Syed ZA, Zhang L, Ten Hagen KG. In vivo models of mucin biosynthesis and function. Advanced Drug Delivery Reviews. 2022;184: 114182. SyedZA ZhangL Ten HagenKG In vivo models of mucin biosynthesis and function Advanced Drug Delivery Reviews 2022 184 114182 Search in Google Scholar

Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(Suppl 1): 4659–4665. JohanssonME LarssonJM HanssonGC The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions Proceedings of the National Academy of Sciences of the United States of America 2011 108 Suppl 1 4659 4665 Search in Google Scholar

Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochimica et Biophysica Acta. 2008;1780: 546–563. TarpMA ClausenH Mucin-type O-glycosylation and its potential use in drug and vaccine development Biochimica et Biophysica Acta 2008 1780 546 563 Search in Google Scholar

Garde S, Chodisetti PK, Reddy M. Peptidoglycan: structure, synthesis, and regulation. EcoSal Plus. 2021;9. GardeS ChodisettiPK ReddyM Peptidoglycan: structure, synthesis, and regulation EcoSal Plus 2021 9 Search in Google Scholar

Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie (International ed. in English). 2005;44: 3358–3393. KlemmD HeubleinB FinkHP BohnA Cellulose: fascinating biopolymer and sustainable raw material Angewandte Chemie (International ed. in English) 2005 44 3358 3393 Search in Google Scholar

Jia Z, O’Mara ML, Zuegg J, Cooper MA, Mark AE. Vancomycin: ligand recognition, dimerization and super-complex formation. The FEBS Journal. 2013;280: 1294–1307. JiaZ O’MaraML ZueggJ CooperMA MarkAE Vancomycin: ligand recognition, dimerization and super-complex formation The FEBS Journal 2013 280 1294 1307 Search in Google Scholar

Rudd PM, Karlsson NG, Khoo KH, Thaysen-Andersen M, Wells L, Packer NH. Glycomics and glycoproteomics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 689–704. RuddPM KarlssonNG KhooKH Thaysen-AndersenM WellsL PackerNH Glycomics and glycoproteomics In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 689 704 Search in Google Scholar

Jayaraman V, Toledo-Patino S, Noda-Garcia L, Laurino P. Mechanisms of protein evolution. Protein Science. 2022;31: e4362. JayaramanV Toledo-PatinoS Noda-GarciaL LaurinoP Mechanisms of protein evolution Protein Science 2022 31 e4362 Search in Google Scholar

Lauc G, Kristic J, Zoldos V. Glycans – the third revolution in evolution. Frontiers in Genetics. 2014;5: 145. LaucG KristicJ ZoldosV Glycans – the third revolution in evolution Frontiers in Genetics 2014 5 145 Search in Google Scholar

Varki A. Nothing in glycobiology makes sense, except in the light of evolution. Cell. 2006;126: 841–845. VarkiA Nothing in glycobiology makes sense, except in the light of evolution Cell 2006 126 841 845 Search in Google Scholar

Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology. 2019;29: 625–644. SuzukiN Glycan diversity in the course of vertebrate evolution Glycobiology 2019 29 625 644 Search in Google Scholar

Springer SA, Gagneux P. Glycan evolution in response to collaboration, conflict, and constraint. The Journal of Biological Chemistry. 2013;288: 6904–6911. SpringerSA GagneuxP Glycan evolution in response to collaboration, conflict, and constraint The Journal of Biological Chemistry 2013 288 6904 6911 Search in Google Scholar

Varki A. Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harbor Perspectives in Biology. 2011;3: a005462. VarkiA Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells Cold Spring Harbor Perspectives in Biology 2011 3 a005462 Search in Google Scholar

West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, glycoproteomics, and glycogenomics: an inter-taxa evolutionary perspective. Molecular and Cellular Proteomics. 2021;20: 100024. WestCM MalzlD HykollariA WilsonIBH Glycomics, glycoproteomics, and glycogenomics: an inter-taxa evolutionary perspective Molecular and Cellular Proteomics 2021 20 100024 Search in Google Scholar

Alberts B, Heald R, Johnson A, Morgan D, Raff M. Protein function. In: Molecular biology of the cell, 7th Ed. New York: WW. Norton & Company, Inc.; 2022. p. 195–222. AlbertsB HealdR JohnsonA MorganD RaffM Protein function In: Molecular biology of the cell 7th Ed. New York WW. Norton & Company, Inc. 2022 195 222 Search in Google Scholar

Wilson TJ, Lilley DM. RNA catalysis – is that it? RNA. 2015;21: 534–537. WilsonTJ LilleyDM RNA catalysis – is that it? RNA 2015 21 534 537 Search in Google Scholar

Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. Essentials of glycobiology, 4th Ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor; 2022. VarkiA CummingsRD EskoJD StanleyP HartGW AebiM Essentials of glycobiology 4th Ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor 2022 Search in Google Scholar

Murate M, Kobayashi T. Distribution of glycolipids in the plasma membrane monitored by specific probes in combination with sodium dodecyl sulfate-digested freeze-fracture replica labeling (SDS-FRL). Methods in Molecular Biology. 2023;2613: 189–202. MurateM KobayashiT Distribution of glycolipids in the plasma membrane monitored by specific probes in combination with sodium dodecyl sulfate-digested freeze-fracture replica labeling (SDS-FRL) Methods in Molecular Biology 2023 2613 189 202 Search in Google Scholar

Keenan EK, Zachman DK, Hirschey MD. Discovering the landscape of protein modifications. Molecular Cell. 2021;81: 1868–1878. KeenanEK ZachmanDK HirscheyMD Discovering the landscape of protein modifications Molecular Cell 2021 81 1868 1878 Search in Google Scholar

Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. Journal of Biosciences. 2020;45: 135. RamaziS AllahverdiA ZahiriJ Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders Journal of Biosciences 2020 45 135 Search in Google Scholar

Zhang X, Li D, Zhu J, Zheng J, Li H, He Q, et al. RNAPII degradation factor Def1 is required for development, stress response, and full virulence of magnaporthe oryzae. Journal of Fungi (Basel). 2023;9: 467. ZhangX LiD ZhuJ ZhengJ LiH HeQ RNAPII degradation factor Def1 is required for development, stress response, and full virulence of magnaporthe oryzae Journal of Fungi (Basel) 2023 9 467 Search in Google Scholar

Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446: 1017–1022. HartGW HousleyMP SlawsonC Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins Nature 2007 446 1017 1022 Search in Google Scholar

Zachara NE, Akimoto Y, Boyce M, Hart GW. The O-GlcNAc modification. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 251–264. ZacharaNE AkimotoY BoyceM HartGW The O-GlcNAc modification In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 251 264 Search in Google Scholar

Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. Journal of Neurochemistry. 2018;144: 7–34. AkanI Olivier-Van StichelenS BondMR HanoverJA Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration Journal of Neurochemistry 2018 144 7 34 Search in Google Scholar

Mannino MP, Hart GW. The beginner’s guide to O-GlcNAc: from nutrient sensitive pathway regulation to its impact on the immune system. Frontiers in Immunology. 2022;13: 828648. ManninoMP HartGW The beginner’s guide to O-GlcNAc: from nutrient sensitive pathway regulation to its impact on the immune system Frontiers in Immunology 2022 13 828648 Search in Google Scholar

Krause MW, Love DC, Ghosh SK, Wang P, Yun S, Fukushige T, et al. Nutrient-driven O-GlcNAcylation at promoters impacts genome-Wide RNA Pol II distribution. Front Endocrinology (Lausanne). 2018;9: 521. KrauseMW LoveDC GhoshSK WangP YunS FukushigeT Nutrient-driven O-GlcNAcylation at promoters impacts genome-Wide RNA Pol II distribution Front Endocrinology (Lausanne) 2018 9 521 Search in Google Scholar

Bandini G, Haserick JR, Motari E, Ouologuem DT, Lourido S, Roos DS, et al. O-fucosylated glycoproteins form assemblies in close proximity to the nuclear pore complexes of Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America. 2016;113: 11567–11572. BandiniG HaserickJR MotariE OuologuemDT LouridoS RoosDS O-fucosylated glycoproteins form assemblies in close proximity to the nuclear pore complexes of Toxoplasma gondii Proceedings of the National Academy of Sciences of the United States of America 2016 113 11567 11572 Search in Google Scholar

Sun TP. Novel nucleocytoplasmic protein O-fucosylation by SPINDLY regulates diverse developmental processes in plants. Current Opinion in Structural Biology. 2021;68: 113–121. SunTP Novel nucleocytoplasmic protein O-fucosylation by SPINDLY regulates diverse developmental processes in plants Current Opinion in Structural Biology 2021 68 113 121 Search in Google Scholar

West CM, Blader IJ. Oxygen sensing by protozoans: how they catch their breath. Current Opinion in Microbiology. 2015;26: 41–47. WestCM BladerIJ Oxygen sensing by protozoans: how they catch their breath Current Opinion in Microbiology 2015 26 41 47 Search in Google Scholar

Sekar K, Linker SM, Nguyen J, Grunhagen A, Stocker R, Sauer U. Bacterial glycogen provides short-term benefits in changing environments. Applied and Environmental Microbiology. 2020;86: e00049–20. SekarK LinkerSM NguyenJ GrunhagenA StockerR SauerU Bacterial glycogen provides short-term benefits in changing environments Applied and Environmental Microbiology 2020 86 e00049 20 Search in Google Scholar

Liu QH, Tang JW, Wen PB, Wang MM, Zhang X, Wang L. From prokaryotes to eukaryotes: insights into the molecular structure of glycogen particles. Frontiers in Molecular Biosciences. 2021;8: 673315. LiuQH TangJW WenPB WangMM ZhangX WangL From prokaryotes to eukaryotes: insights into the molecular structure of glycogen particles Frontiers in Molecular Biosciences 2021 8 673315 Search in Google Scholar

Pfister B, Zeeman SC. Formation of starch in plant cells. Cellular and Molecular Life Sciences. 2016;73: 2781–2807. PfisterB ZeemanSC Formation of starch in plant cells Cellular and Molecular Life Sciences 2016 73 2781 2807 Search in Google Scholar

Lomako J, Lomako WM, Whelan WJ. Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochimica et Biophysica Acta. 2004;1673: 45–55. LomakoJ LomakoWM WhelanWJ Glycogenin: the primer for mammalian and yeast glycogen synthesis Biochimica et Biophysica Acta 2004 1673 45 55 Search in Google Scholar

Sun RC, Young LEA, Bruntz RC, Markussen KH, Zhou Z, Conroy LR, et al. Brain glycogen serves as a critical glucosamine cache required for protein glycosylation. Cell Metabolism. 2021;33: 1404–1417.e9. SunRC YoungLEA BruntzRC MarkussenKH ZhouZ ConroyLR Brain glycogen serves as a critical glucosamine cache required for protein glycosylation Cell Metabolism 2021 33 1404 1417.e9 Search in Google Scholar

Li C, Hu Z. Is liver glycogen fragility a possible drug target for diabetes? FASEB Journal. 2020;34: 3–15. LiC HuZ Is liver glycogen fragility a possible drug target for diabetes? FASEB Journal 2020 34 3 15 Search in Google Scholar

Visuttijai K, Hedberg-Oldfors C, Thomsen C, Glamuzina E, Kornblum C, Tasca G, et al. Glycogenin is dispensable for glycogen synthesis in human muscle, and glycogenin deficiency causes polyglucosan storage. The Journal of Clinical Endocrinology and Metabolism. 2020;105: 557–566. VisuttijaiK Hedberg-OldforsC ThomsenC GlamuzinaE KornblumC TascaG Glycogenin is dispensable for glycogen synthesis in human muscle, and glycogenin deficiency causes polyglucosan storage The Journal of Clinical Endocrinology and Metabolism 2020 105 557 566 Search in Google Scholar

Testoni G, Duran J, Garcia-Rocha M, Vilaplana F, Serrano AL, Sebastian D, et al. Lack of glycogenin causes glycogen accumulation and muscle function impairment. Cell Metabolism. 2017;26: 256–266.e4. TestoniG DuranJ Garcia-RochaM VilaplanaF SerranoAL SebastianD Lack of glycogenin causes glycogen accumulation and muscle function impairment Cell Metabolism 2017 26 256 266.e4 Search in Google Scholar

Tetlow IJ, Bertoft E. A review of starch biosynthesis in relation to the building block-backbone model. International Journal of Molecular Sciences. 2020;21: 7011. TetlowIJ BertoftE A review of starch biosynthesis in relation to the building block-backbone model International Journal of Molecular Sciences 2020 21 7011 Search in Google Scholar

Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12: 43R–56R. SpiroRG Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds Glycobiology 2002 12 43R 56R Search in Google Scholar

Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nature Reviews Molecular Cell Biology. 2020;21: 729–749. SchjoldagerKT NarimatsuY JoshiHJ ClausenH Global view of human protein glycosylation pathways and functions Nature Reviews Molecular Cell Biology 2020 21 729 749 Search in Google Scholar

Stepper J, Shastri S, Loo TS, Preston JC, Novak P, Man P, et al. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Letters. 2011;585: 645–650. StepperJ ShastriS LooTS PrestonJC NovakP ManP Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins FEBS Letters 2011 585 645 650 Search in Google Scholar

Olsen EH, Rahbek-Nielsen H, Thogersen IB, Roepstorff P, Enghild JJ. Posttranslational modifications of human inter-alpha-inhibitor: identification of glycans and disulfide bridges in heavy chains 1 and 2. Biochemistry. 1998;37: 408–416. OlsenEH Rahbek-NielsenH ThogersenIB RoepstorffP EnghildJJ Posttranslational modifications of human inter-alpha-inhibitor: identification of glycans and disulfide bridges in heavy chains 1 and 2 Biochemistry 1998 37 408 416 Search in Google Scholar

Maynard JC, Burlingame AL, Medzihradszky KF. Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), a new post-translational modification in mammals. Molecular and Cellular Proteomics. 2016;15: 3405–3411. MaynardJC BurlingameAL MedzihradszkyKF Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), a new post-translational modification in mammals Molecular and Cellular Proteomics 2016 15 3405 3411 Search in Google Scholar

Xiao H, Wu R. Global and site-specific analysis revealing unexpected and extensive protein S-GlcNAcylation in human cells. Analytical Chemistry. 2017;89: 3656–3663. XiaoH WuR Global and site-specific analysis revealing unexpected and extensive protein S-GlcNAcylation in human cells Analytical Chemistry 2017 89 3656 3663 Search in Google Scholar

Di Marco F, Blochl C, Esser-Skala W, Schapertons V, Zhang T, Wuhrer M, et al. Glycoproteomics of a single protein: revealing tens of thousands of myozyme glycoforms by hybrid HPLC-MS approaches. Molecular and Cellular Proteomics. 2023;22: 100622. Di MarcoF BlochlC Esser-SkalaW SchapertonsV ZhangT WuhrerM Glycoproteomics of a single protein: revealing tens of thousands of myozyme glycoforms by hybrid HPLC-MS approaches Molecular and Cellular Proteomics 2023 22 100622 Search in Google Scholar

Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific Reports. 2020;10: 14991. GrantOC MontgomeryD ItoK WoodsRJ Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition Scientific Reports 2020 10 14991 Search in Google Scholar

Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America. 1990;87: 4576–4579. WoeseCR KandlerO WheelisML Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya Proceedings of the National Academy of Sciences of the United States of America 1990 87 4576 4579 Search in Google Scholar

Messner P. Bacterial glycoproteins. Glycoconjugate Journal. 1997;14: 3–11. MessnerP Bacterial glycoproteins Glycoconjugate Journal 1997 14 3 11 Search in Google Scholar

Schaffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiology Reviews. 2017;41: 49–91. SchafferC MessnerP Emerging facets of prokaryotic glycosylation FEMS Microbiology Reviews 2017 41 49 91 Search in Google Scholar

Upreti RK, Kumar M, Shankar V. Bacterial glycoproteins: functions, biosynthesis and applications. Proteomics. 2003;3: 363–379. UpretiRK KumarM ShankarV Bacterial glycoproteins: functions, biosynthesis and applications Proteomics 2003 3 363 379 Search in Google Scholar

Barrett K, Dube DH. Chemical tools to study bacterial glycans: a tale from discovery of glycoproteins to disruption of their function. Israel Journal of Chemistry. 2023;63: e202200050. BarrettK DubeDH Chemical tools to study bacterial glycans: a tale from discovery of glycoproteins to disruption of their function Israel Journal of Chemistry 2023 63 e202200050 Search in Google Scholar

Janhvi S, Saini S, Singh V, Sharma T, Rao A. ProGlycProt V3.0: updated insights into prokaryotic glycoproteins and their glycosyltransferases. Glycobiology. 2023: cwad103. JanhviS SainiS SinghV SharmaT RaoA ProGlycProt V3.0: updated insights into prokaryotic glycoproteins and their glycosyltransferases Glycobiology 2023 cwad103 Search in Google Scholar

Mescher MF, Strominger JL. Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. The Journal of Biological Chemistry. 1976;251: 2005–2014. MescherMF StromingerJL Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium The Journal of Biological Chemistry 1976 251 2005 2014 Search in Google Scholar

Abu-Qarn M, Eichler J, Sharon N. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Current Opinion in Structural Biology. 2008;18: 544–550. Abu-QarnM EichlerJ SharonN Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea Current Opinion in Structural Biology 2008 18 544 550 Search in Google Scholar

Benz I, Schmidt MA. Never say never again: protein glycosylation in pathogenic bacteria. Molecular Microbiology. 2002;45: 267–276. BenzI SchmidtMA Never say never again: protein glycosylation in pathogenic bacteria Molecular Microbiology 2002 45 267 276 Search in Google Scholar

Sleytr UB, Schuster B, Egelseer EM, Pum D. S-layers: principles and applications. FEMS Microbiology Reviews. 2014;38: 823–864. SleytrUB SchusterB EgelseerEM PumD S-layers: principles and applications FEMS Microbiology Reviews 2014 38 823 864 Search in Google Scholar

Fagan RP, Fairweather NF. Biogenesis and functions of bacterial S-layers. Nature Reviews Microbiology. 2014;12: 211–222. FaganRP FairweatherNF Biogenesis and functions of bacterial S-layers Nature Reviews Microbiology 2014 12 211 222 Search in Google Scholar

Comstock LE. Importance of glycans to the host-bacteroides mutualism in the mammalian intestine. Cell Host and Microbe. 2009;5: 522–526. ComstockLE Importance of glycans to the host-bacteroides mutualism in the mammalian intestine Cell Host and Microbe 2009 5 522 526 Search in Google Scholar

Veith PD, Gorasia DG, Reynolds EC. Characterization of the O-Glycoproteome of Flavobacterium johnsoniae. Journal of Bacteriology. 2023;205: e0009323. VeithPD GorasiaDG ReynoldsEC Characterization of the O-Glycoproteome of Flavobacterium johnsoniae Journal of Bacteriology 2023 205 e0009323 Search in Google Scholar

Seepersaud R, Anderson AC, Bensing BA, Choudhury BP, Clarke AJ, Sullam PM. O-acetylation controls the glycosylation of bacterial serine-rich repeat glycoproteins. The Journal of Biological Chemistry. 2021;296: 100249. SeepersaudR AndersonAC BensingBA ChoudhuryBP ClarkeAJ SullamPM O-acetylation controls the glycosylation of bacterial serine-rich repeat glycoproteins The Journal of Biological Chemistry 2021 296 100249 Search in Google Scholar

Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA. Structure of the fibre-forming protein pilin at 2.6 a resolution. Nature. 1995;378: 32–38. PargeHE ForestKT HickeyMJ ChristensenDA GetzoffED TainerJA Structure of the fibre-forming protein pilin at 2.6 a resolution Nature 1995 378 32 38 Search in Google Scholar

Benz I, Schmidt MA. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Molecular Microbiology. 2001;40: 1403–1413. BenzI SchmidtMA Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin Molecular Microbiology 2001 40 1403 1413 Search in Google Scholar

Yari S, Afrough P, Yari F, Ghazanfari Jajin M, Fateh A, Hadizadeh Tasbiti A. A potent subset of Mycobacterium tuberculosis glycoproteins as relevant candidates for vaccine and therapeutic target. Scientific Reports. 2023;13: 22194. YariS AfroughP YariF Ghazanfari JajinM FatehA Hadizadeh TasbitiA A potent subset of Mycobacterium tuberculosis glycoproteins as relevant candidates for vaccine and therapeutic target Scientific Reports 2023 13 22194 Search in Google Scholar

Tucci P, Portela M, Chetto CR, Gonzalez-Sapienza G, Marin M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One. 2020;15: e0221837. TucciP PortelaM ChettoCR Gonzalez-SapienzaG MarinM Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate PLoS One 2020 15 e0221837 Search in Google Scholar

Szymanski CM. Bacterial glycosylation, it’s complicated. Frontiers in Molecular Biosciences. 2022;9: 1015771. SzymanskiCM Bacterial glycosylation, it’s complicated Frontiers in Molecular Biosciences 2022 9 1015771 Search in Google Scholar

Young NM, Brisson JR, Kelly J, Watson DC, Tessier L, Lanthier PH, et al. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. The Journal of Biological Chemistry. 2002;277: 42530–42539. YoungNM BrissonJR KellyJ WatsonDC TessierL LanthierPH Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni The Journal of Biological Chemistry 2002 277 42530 42539 Search in Google Scholar

Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Molecular Microbiology. 1999;32: 1022–1030. SzymanskiCM YaoR EwingCP TrustTJ GuerryP Evidence for a system of general protein glycosylation in Campylobacter jejuni Molecular Microbiology 1999 32 1022 1030 Search in Google Scholar

Ristl R, Steiner K, Zarschler K, Zayni S, Messner P, Schaffer C. The s-layer glycome-adding to the sugar coat of bacteria. International Journal of Microbiology. 2011;2011: 127870. RistlR SteinerK ZarschlerK ZayniS MessnerP SchafferC The s-layer glycome-adding to the sugar coat of bacteria International Journal of Microbiology 2011 2011 127870 Search in Google Scholar

Oman TJ, Boettcher JM, Wang H, Okalibe XN, van der Donk WA. Sublancin is not a lantibiotic but an S-linked glycopeptide. Nature Chemical Biology. 2011;7: 78–80. OmanTJ BoettcherJM WangH OkalibeXN van der DonkWA Sublancin is not a lantibiotic but an S-linked glycopeptide Nature Chemical Biology 2011 7 78 80 Search in Google Scholar

Waglechner N, McArthur AG, Wright GD. Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance. Nature Microbiology. 2019;4: 1862–1871. WaglechnerN McArthurAG WrightGD Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance Nature Microbiology 2019 4 1862 1871 Search in Google Scholar

Sacoman JL, Dagda RY, Burnham-Marusich AR, Dagda RK, Berninsone PM. Mitochondrial O-GlcNAc transferase (mOGT) regulates mitochondrial structure, function, survival in HeLa cells. The Journal of Biological Chemistry. 2017;292: 4499–4518. SacomanJL DagdaRY Burnham-MarusichAR DagdaRK BerninsonePM Mitochondrial O-GlcNAc transferase (mOGT) regulates mitochondrial structure, function, survival in HeLa cells The Journal of Biological Chemistry 2017 292 4499 4518 Search in Google Scholar

Mikkola S. Nucleotide sugars in chemistry and biology. Molecules. 2020;25: 5755. MikkolaS Nucleotide sugars in chemistry and biology Molecules 2020 25 5755 Search in Google Scholar

Surmacz L, Swiezewska E. Polyisoprenoids – secondary metabolites or physiologically important superlipids? Biochemical and Biophysical Research Communications. 2011;407: 627–632. SurmaczL SwiezewskaE Polyisoprenoids – secondary metabolites or physiologically important superlipids? Biochemical and Biophysical Research Communications 2011 407 627 632 Search in Google Scholar

Banfalvi G. Prebiotic pathway from ribose to RNA formation. International Journal of Molecular Sciences. 2021;22: 3857. BanfalviG Prebiotic pathway from ribose to RNA formation International Journal of Molecular Sciences 2021 22 3857 Search in Google Scholar

Delidovich IV, Simonov AN, Taran OP, Parmon VN. Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis. ChemSusChem. 2014;7: 1833–1846. DelidovichIV SimonovAN TaranOP ParmonVN Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis ChemSusChem 2014 7 1833 1846 Search in Google Scholar

Krisnamurthy R, Liotta CL. The potential of glyoxylate as a prebiotic source molecule and a reactant in protometabolic pathways—The glyoxylose reaction. Chem Biology. 2023;9. KrisnamurthyR LiottaCL The potential of glyoxylate as a prebiotic source molecule and a reactant in protometabolic pathways—The glyoxylose reaction Chem Biology 2023 9 Search in Google Scholar

Yi R, Mojica M, Fahrenbach AC, James Cleaves H, 2nd, Krishnamurthy R, Liotta CL. Carbonyl migration in uronates affords a potential prebiotic pathway for pentose production. Journal of the American Chemical Society Au. 2023;3: 2522–2535. YiR MojicaM FahrenbachAC James CleavesH2nd KrishnamurthyR LiottaCL Carbonyl migration in uronates affords a potential prebiotic pathway for pentose production Journal of the American Chemical Society Au 2023 3 2522 2535 Search in Google Scholar

Higgs PG, Lehman N. The RNA World: molecular cooperation at the origins of life. Nature Reviews Genetics. 2015;16: 7–17. HiggsPG LehmanN The RNA World: molecular cooperation at the origins of life Nature Reviews Genetics 2015 16 7 17 Search in Google Scholar

Omran A, Menor-Salvan C, Springsteen G, Pasek M. The messy alkaline formose reaction and its link to metabolism. Life (Basel). 2020;10: 125. OmranA Menor-SalvanC SpringsteenG PasekM The messy alkaline formose reaction and its link to metabolism Life (Basel) 2020 10 125 Search in Google Scholar

Benner SA, Kim HJ, Kim MJ, Ricardo A. Planetary organic chemistry and the origins of biomolecules. Cold Spring Harbor Perspectives in Biology. 2010;2: a003467. BennerSA KimHJ KimMJ RicardoA Planetary organic chemistry and the origins of biomolecules Cold Spring Harbor Perspectives in Biology 2010 2 a003467 Search in Google Scholar

Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature. 2001;414: 879–883. CooperG KimmichN BelisleW SarinanaJ BrabhamK GarrelL Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth Nature 2001 414 879 883 Search in Google Scholar

Furukawa Y, Chikaraishi Y, Ohkouchi N, Ogawa NO, Glavin DP, Dworkin JP, et al. Extraterrestrial ribose and other sugars in primitive meteorites. Proceedings of the National Academy of Sciences of the United States of America. 2019;116: 24440–24445. FurukawaY ChikaraishiY OhkouchiN OgawaNO GlavinDP DworkinJP Extraterrestrial ribose and other sugars in primitive meteorites Proceedings of the National Academy of Sciences of the United States of America 2019 116 24440 24445 Search in Google Scholar

Zellner NEB, McCaffrey VP, Butler JHE. Cometary glycolaldehyde as a source of pre-RNA molecules. Astrobiology. 2020;20: 1377–1388. ZellnerNEB McCaffreyVP ButlerJHE Cometary glycolaldehyde as a source of pre-RNA molecules Astrobiology 2020 20 1377 1388 Search in Google Scholar

Tsai CH, Chen J, Szostak JW. Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proceedings of the National Academy of Sciences of the United States of America. 2007;104: 14598–14603. TsaiCH ChenJ SzostakJW Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template Proceedings of the National Academy of Sciences of the United States of America 2007 104 14598 14603 Search in Google Scholar

Banfalvi G. Why ribose was selected as the sugar component of nucleic acids. DNA and Cell Biology. 2006;25: 189–196. BanfalviG Why ribose was selected as the sugar component of nucleic acids DNA and Cell Biology 2006 25 189 196 Search in Google Scholar

Banfalvi G. Ribose selected as precursor to life. DNA and Cell Biology. 2020;39: 177–186. BanfalviG Ribose selected as precursor to life DNA and Cell Biology 2020 39 177 186 Search in Google Scholar

Bernhardt HS, Tate WP. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biology Direct. 2012;7: 4. BernhardtHS TateWP Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biology Direct 2012 7 4 Search in Google Scholar

Yi R, Tran QP, Ali S, Yoda I, Adam ZR, Cleaves HJ, 2nd, et al. A continuous reaction network that produces RNA precursors. Proceedings of the National Academy of Sciences of the United States of America. 2020;117: 13267–13274. YiR TranQP AliS YodaI AdamZR CleavesHJ2nd A continuous reaction network that produces RNA precursors Proceedings of the National Academy of Sciences of the United States of America 2020 117 13267 13274 Search in Google Scholar

Rivas M, Becerra A, Lazcano A. On the early evolution of catabolic pathways: a comparative genomics Approach. I. The cases of glucose, ribose, and the nucleobases catabolic routes. Journal of Molecular Evolution. 2018;86: 27–46. RivasM BecerraA LazcanoA On the early evolution of catabolic pathways: a comparative genomics Approach. I. The cases of glucose, ribose, and the nucleobases catabolic routes Journal of Molecular Evolution 2018 86 27 46 Search in Google Scholar

Blackmond DG. The origin of biological homochirality. Cold Spring Harbor Perspectives in Biology. 2019;11: a032540. BlackmondDG The origin of biological homochirality Cold Spring Harbor Perspectives in Biology 2019 11 a032540 Search in Google Scholar

Breslow R, Cheng ZL. L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions. Proceedings of the National Academy of Sciences of the United States of America. 2010;107: 5723–5725. BreslowR ChengZL L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions Proceedings of the National Academy of Sciences of the United States of America 2010 107 5723 5725 Search in Google Scholar

Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, et al. Raman and infrared spectroscopy of carbohydrates: a review. Spectrochimica Acta Part A, Biomolecular Spectroscopy. 2017;185: 317–335. WiercigrochE SzafraniecE CzamaraK PaciaMZ MajznerK KochanK Raman and infrared spectroscopy of carbohydrates: a review Spectrochimica Acta Part A, Biomolecular Spectroscopy 2017 185 317 335 Search in Google Scholar

Abdulbagi M, Wang L, Siddig O, Di B, Li B. D-amino acids and D-amino acid-containing peptides: potential disease biomarkers and therapeutic targets? Biomolecules. 2021;11: 1716. AbdulbagiM WangL SiddigO DiB LiB D-amino acids and D-amino acid-containing peptides: potential disease biomarkers and therapeutic targets? Biomolecules 2021 11 1716 Search in Google Scholar

Gao DM, Kobayashi T, Adachi S. Kinetic analysis for the isomerization of glucose, fructose, and mannose in subcritical aqueous ethanol. Bioscience, Biotechnology, and Biochemistry. 2015;79: 1005–1010. GaoDM KobayashiT AdachiS Kinetic analysis for the isomerization of glucose, fructose, and mannose in subcritical aqueous ethanol Bioscience, Biotechnology, and Biochemistry 2015 79 1005 1010 Search in Google Scholar

Apriyanto A, Compart J, Fettke J. A review of starch, a unique biopolymer – Structure, metabolism and in planta modifications. Plant Science. 2022;318: 111223. ApriyantoA CompartJ FettkeJ A review of starch, a unique biopolymer – Structure, metabolism and in planta modifications Plant Science 2022 318 111223 Search in Google Scholar

Pfister B, Zeeman SC, Rugen MD, Field RA, Ebenhoh O, Raguin A. Theoretical and experimental approaches to understand the biosynthesis of starch granules in a physiological context. Photosynthesis Research. 2020;145: 55–70. PfisterB ZeemanSC RugenMD FieldRA EbenhohO RaguinA Theoretical and experimental approaches to understand the biosynthesis of starch granules in a physiological context Photosynthesis Research 2020 145 55 70 Search in Google Scholar

Damager I, Engelsen SB, Blennow A, Moller BL, Motawia MS. First principles insight into the alpha-glucan structures of starch: their synthesis, conformation, and hydration. Chemical Reviews. 2010;110: 2049–2080. DamagerI EngelsenSB BlennowA MollerBL MotawiaMS First principles insight into the alpha-glucan structures of starch: their synthesis, conformation, and hydration Chemical Reviews 2010 110 2049 2080 Search in Google Scholar

Gentry MS, Guinovart JJ, Minassian BA, Roach PJ, Serratosa JM. Lafora disease offers a unique window into neuronal glycogen metabolism. The Journal of Biological Chemistry. 2018;293: 7117–7125. GentryMS GuinovartJJ MinassianBA RoachPJ SerratosaJM Lafora disease offers a unique window into neuronal glycogen metabolism The Journal of Biological Chemistry 2018 293 7117 7125 Search in Google Scholar

Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. Journal of Experimental Botany. 2011;62: 1775–1801. BallS ColleoniC CenciU RajJN TirtiauxC The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis Journal of Experimental Botany 2011 62 1775 1801 Search in Google Scholar

Mollers KB, Cannella D, Jorgensen H, Frigaard NU. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels. 2014;7: 64. MollersKB CannellaD JorgensenH FrigaardNU Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation Biotechnology for Biofuels 2014 7 64 Search in Google Scholar

Xu X, Yang Y, Liu C, Sun Y, Zhang T, Hou M, et al. The evolutionary history of the sucrose synthase gene family in higher plants. BMC Plant Biology. 2019;19: 566. XuX YangY LiuC SunY ZhangT HouM The evolutionary history of the sucrose synthase gene family in higher plants BMC Plant Biology 2019 19 566 Search in Google Scholar

Rabbani N, Thornalley PJ. Glycation research in amino acids: a place to call home. Amino Acids. 2012;42: 1087–1096. RabbaniN ThornalleyPJ Glycation research in amino acids: a place to call home Amino Acids 2012 42 1087 1096 Search in Google Scholar

Twarda-Clapa A, Olczak A, Bialkowska AM, Koziolkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11: 1312. Twarda-ClapaA OlczakA BialkowskaAM KoziolkiewiczM Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs Cells 2022 11 1312 Search in Google Scholar

Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH, et al. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology. 2002;40: 871–898. RichardsAB KrakowkaS DexterLB SchmidH WolterbeekAP Waalkens-BerendsenDH Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies Food and Chemical Toxicology 2002 40 871 898 Search in Google Scholar

Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13: 17R–27R. ElbeinAD PanYT PastuszakI CarrollD New insights on trehalose: a multifunctional molecule Glycobiology 2003 13 17R 27R Search in Google Scholar

Xiang J, Liu F, Wang B, Chen L, Liu W, Tan S. A literature review on maillard reaction based on milk proteins and carbohydrates in food and pharmaceutical products: advantages, disadvantages, and avoidance strategies. Foods. 2021;10: 1998. XiangJ LiuF WangB ChenL LiuW TanS A literature review on maillard reaction based on milk proteins and carbohydrates in food and pharmaceutical products: advantages, disadvantages, and avoidance strategies Foods 2021 10 1998 Search in Google Scholar

Cardona T. Origin of bacteriochlorophyll A and the early diversification of photosynthesis. PLoS One. 2016;11: e0151250. CardonaT Origin of bacteriochlorophyll A and the early diversification of photosynthesis PLoS One 2016 11 e0151250 Search in Google Scholar

Rothschild LJ. The evolution of photosynthesis…again? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2008;363: 2787–2801. RothschildLJ The evolution of photosynthesis…again? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 2008 363 2787 2801 Search in Google Scholar

Stirbet A, Lazar D, Guo Y, Govindjee G. Photosynthesis: basics, history and modelling. Annals of Botany. 2020;126: 511–537. StirbetA LazarD GuoY GovindjeeG Photosynthesis: basics, history and modelling Annals of Botany 2020 126 511 537 Search in Google Scholar

Blankenship RE. Early evolution of photosynthesis. Plant Physiology. 2010;154: 434–438. BlankenshipRE Early evolution of photosynthesis Plant Physiology 2010 154 434 438 Search in Google Scholar

Margulis L. Symbiosis in cell evolution. San Francisco: W.H. Freeman; 1992. MargulisL Symbiosis in cell evolution San Francisco W.H. Freeman 1992 Search in Google Scholar

Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311: 1737–1740. JohnsonZI ZinserER CoeA McNultyNP WoodwardEM ChisholmSW Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients Science 2006 311 1737 1740 Search in Google Scholar

Kinoshita T. Glycosylphosphatidylinositol (GPI) anchors: biochemistry and cell biology: introduction to a thematic review series. Journal of Lipid Research. 2016;57: 4–5. KinoshitaT Glycosylphosphatidylinositol (GPI) anchors: biochemistry and cell biology: introduction to a thematic review series Journal of Lipid Research 2016 57 4 5 Search in Google Scholar

Cummings RD, Pierce JM. The challenge and promise of glycomics. Chem Biology. 2014;21: 1–15. CummingsRD PierceJM The challenge and promise of glycomics Chem Biology 2014 21 1 15 Search in Google Scholar

Goettig P. Effects of glycosylation on the enzymatic activity and mechanisms of proteases. International Journal of Molecular Sciences. 2016;17: 1969. GoettigP Effects of glycosylation on the enzymatic activity and mechanisms of proteases International Journal of Molecular Sciences 2016 17 1969 Search in Google Scholar

Goth CK, Mehta AY, McQuillan AM, Baker KJ, Hanes MS, Park SS, et al. Chemokine binding to PSGL-1 is controlled by O-glycosylation and tyrosine sulfation. Cell Chemical Biology. 2023;30: 893–905.e7. GothCK MehtaAY McQuillanAM BakerKJ HanesMS ParkSS Chemokine binding to PSGL-1 is controlled by O-glycosylation and tyrosine sulfation Cell Chemical Biology 2023 30 893 905.e7 Search in Google Scholar

Yamauchi M, Sricholpech M. Lysine post-translational modifications of collagen. Essays in Biochemistry. 2012;52: 113–133. YamauchiM SricholpechM Lysine post-translational modifications of collagen Essays in Biochemistry 2012 52 113 133 Search in Google Scholar

Tanwar A, Stanley P. Synergistic regulation of Notch signaling by different O-glycans promotes hematopoiesis. Frontiers in Immunology. 2023;14: 1097332. TanwarA StanleyP Synergistic regulation of Notch signaling by different O-glycans promotes hematopoiesis Frontiers in Immunology 2023 14 1097332 Search in Google Scholar

Bonnardel F, Haslam SM, Dell A, Feizi T, Liu Y, Tajadura-Ortega V, et al. Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome. Nature Partner Journals Biofilms and Microbiomes. 2021;7: 49. BonnardelF HaslamSM DellA FeiziT LiuY Tajadura-OrtegaV Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome Nature Partner Journals Biofilms and Microbiomes 2021 7 49 Search in Google Scholar

Pan Y, Xia L. Emerging roles of podoplanin in vascular development and homeostasis. Frontiers of Medicine. 2015;9: 421–430. PanY XiaL Emerging roles of podoplanin in vascular development and homeostasis Frontiers of Medicine 2015 9 421 430 Search in Google Scholar

Serio AW, Keepers T, Andrews L, Krause KM. Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal Plus. 2018;8. SerioAW KeepersT AndrewsL KrauseKM Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation EcoSal Plus 2018 8 Search in Google Scholar

Blaskovich MAT, Hansford KA, Butler MS, Jia Z, Mark AE, Cooper MA. Developments in glycopeptide antibiotics. American Chemical Society Infectious Diseases. 2018;4: 715–735. BlaskovichMAT HansfordKA ButlerMS JiaZ MarkAE CooperMA Developments in glycopeptide antibiotics American Chemical Society Infectious Diseases 2018 4 715 735 Search in Google Scholar

Hanafusa K, Hotta T, Iwabuchi K. Glycolipids: linchpins in the organization and function of membrane microdomains. Frontiers in Cell and Developmental Biology. 2020;8: 589799. HanafusaK HottaT IwabuchiK Glycolipids: linchpins in the organization and function of membrane microdomains Frontiers in Cell and Developmental Biology 2020 8 589799 Search in Google Scholar

Marques AR, Mirzaian M, Akiyama H, Wisse P, Ferraz MJ, Gaspar P, et al. Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular beta-glucosidases. Journal of Lipid Research. 2016;57: 451–463. MarquesAR MirzaianM AkiyamaH WisseP FerrazMJ GasparP Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular beta-glucosidases Journal of Lipid Research 2016 57 451 463 Search in Google Scholar

Guo Z. The structural diversity of natural glycosphingolipids (GSLs). Journal of Carbohydrate Chemistry. 2022;41: 63–154. GuoZ The structural diversity of natural glycosphingolipids (GSLs) Journal of Carbohydrate Chemistry 2022 41 63 154 Search in Google Scholar

Kalisch B, Dormann P, Holzl G. DGDG and Glycolipids in plants and Algae. Sub Cellular Biochemistry. 2016;86: 51–83. KalischB DormannP HolzlG DGDG and Glycolipids in plants and Algae Sub Cellular Biochemistry 2016 86 51 83 Search in Google Scholar

Xatse MA, Olsen CP. Defining the glucosylceramide population of C. elegans. Frontiers in Physiology. 2023;14: 1244158. XatseMA OlsenCP Defining the glucosylceramide population of C. elegans Frontiers in Physiology 2023 14 1244158 Search in Google Scholar

Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, Zuliani C, et al. Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proceedings of the National Academy of Sciences of the United States of America. 2005;102: 12459–12464. JennemannR SandhoffR WangS KissE GretzN ZulianiC Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth Proceedings of the National Academy of Sciences of the United States of America 2005 102 12459 12464 Search in Google Scholar

Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, et al. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. The Plant Journal. 2015;84: 188–201. MsanneJ ChenM LuttgeharmKD BradleyAM MaysES PaperJM Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis The Plant Journal 2015 84 188 201 Search in Google Scholar

Allen KN, Imperiali B. Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces. Current Opinion in Structural Biology. 2019;59: 81–90. AllenKN ImperialiB Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces Current Opinion in Structural Biology 2019 59 81 90 Search in Google Scholar

Abdel-Mawgoud AM, Stephanopoulos G. Simple glycolipids of microbes: chemistry, biological activity and metabolic engineering. Synthetic and Systems Biotechnology. 2018;3: 3–19. Abdel-MawgoudAM StephanopoulosG Simple glycolipids of microbes: chemistry, biological activity and metabolic engineering Synthetic and Systems Biotechnology 2018 3 3 19 Search in Google Scholar

Kelleher DJ, Banerjee S, Cura AJ, Samuelson J, Gilmore R. Dolichol-linked oligosaccharide selection by the oligosaccharyl-transferase in protist and fungal organisms. The Journal of Cell Biology. 2007;177: 29–37. KelleherDJ BanerjeeS CuraAJ SamuelsonJ GilmoreR Dolichol-linked oligosaccharide selection by the oligosaccharyl-transferase in protist and fungal organisms The Journal of Cell Biology 2007 177 29 37 Search in Google Scholar

Jones MB, Rosenberg JN, Betenbaugh MJ, Krag SS. Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life. Biochimica et Biophysica Acta. 2009;1790: 485–494. JonesMB RosenbergJN BetenbaughMJ KragSS Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life Biochimica et Biophysica Acta 2009 1790 485 494 Search in Google Scholar

Oriol R, Martinez-Duncker I, Chantret I, Mollicone R, Codogno P. Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate. Molecular Biology and Evolution. 2002;19: 1451–1463. OriolR Martinez-DunckerI ChantretI MolliconeR CodognoP Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate Molecular Biology and Evolution 2002 19 1451 1463 Search in Google Scholar

Swiezewska E, Danikiewicz W. Polyisoprenoids: structure, biosynthesis and function. Progress in Lipid Research. 2005;44: 235–258. SwiezewskaE DanikiewiczW Polyisoprenoids: structure, biosynthesis and function Progress in Lipid Research 2005 44 235 258 Search in Google Scholar

Hartley MD, Imperiali B. At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Archives of Biochemistry and Biophysics. 2012;517: 83–97. HartleyMD ImperialiB At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates Archives of Biochemistry and Biophysics 2012 517 83 97 Search in Google Scholar

Hunter WN. The non-mevalonate pathway of isoprenoid precursor biosynthesis. The Journal of Biological Chemistry. 2007;282: 21573–21577. HunterWN The non-mevalonate pathway of isoprenoid precursor biosynthesis The Journal of Biological Chemistry 2007 282 21573 21577 Search in Google Scholar

Gould SB. Membranes and evolution. Current Biology. 2018;28: R381–R385. GouldSB Membranes and evolution Current Biology 2018 28 R381 R385 Search in Google Scholar

Mulkidjanian AY, Galperin MY, Koonin EV. Co-evolution of primordial membranes and membrane proteins. Trends in Biochemical Sciences. 2009;34: 206–215. MulkidjanianAY GalperinMY KooninEV Co-evolution of primordial membranes and membrane proteins Trends in Biochemical Sciences 2009 34 206 215 Search in Google Scholar

Richter JR, Sanderson RD. The glycocalyx: pathobiology and repair. Matrix Biology Plus. 2023;17: 100128. RichterJR SandersonRD The glycocalyx: pathobiology and repair Matrix Biology Plus 2023 17 100128 Search in Google Scholar

Ruiz N. Lipid flippases for bacterial peptidoglycan biosynthesis. Lipid Insights. 2015;8: 21–31. RuizN Lipid flippases for bacterial peptidoglycan biosynthesis Lipid Insights 2015 8 21 31 Search in Google Scholar

Sanyal S, Menon AK. Flipping lipids: why an’ what’s the reason for? ACS Chemical Biology. 2009;4: 895–909. SanyalS MenonAK Flipping lipids: why an’ what’s the reason for? ACS Chemical Biology 2009 4 895 909 Search in Google Scholar

Fujikawa K, Han Y, Osawa T, Mori S, Nomura K, Muramoto M, et al. Structural requirements of a glycolipid MPIase for membrane protein integration. Chemistry. 2023;29: e202300437. FujikawaK HanY OsawaT MoriS NomuraK MuramotoM Structural requirements of a glycolipid MPIase for membrane protein integration Chemistry 2023 29 e202300437 Search in Google Scholar

Chalat M, Menon I, Turan Z, Menon AK. Reconstitution of glucosylceramide flip-flop across endoplasmic reticulum: implications for mechanism of glycosphingolipid biosynthesis. The Journal of Biological Chemistry. 2012;287: 15523–15532. ChalatM MenonI TuranZ MenonAK Reconstitution of glucosylceramide flip-flop across endoplasmic reticulum: implications for mechanism of glycosphingolipid biosynthesis The Journal of Biological Chemistry 2012 287 15523 15532 Search in Google Scholar

Reza S, Ugorski M, Suchanski J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology. 2021;31: 1416–1434. RezaS UgorskiM SuchanskiJ Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease Glycobiology 2021 31 1416 1434 Search in Google Scholar

Zelnik ID, Ventura AE, Kim JL, Silva LC, Futerman AH. The role of ceramide in regulating endoplasmic reticulum function. Biochimica et Biophysica Acta Mol Cell Biol Lipids. 2020;1865: 158489. ZelnikID VenturaAE KimJL SilvaLC FutermanAH The role of ceramide in regulating endoplasmic reticulum function Biochimica et Biophysica Acta Mol Cell Biol Lipids 2020 1865 158489 Search in Google Scholar

Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, van der Sluijs P. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. The Journal of Biological Chemistry. 1998;273: 25880–25888. SprongH KruithofB LeijendekkerR SlotJW van MeerG van der SluijsP UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum The Journal of Biological Chemistry 1998 273 25880 25888 Search in Google Scholar

Ardail D, Popa I, Bodennec J, Louisot P, Schmitt D, Portoukalian J. The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. The Biochemical Journal. 2003;371: 1013–1019. ArdailD PopaI BodennecJ LouisotP SchmittD PortoukalianJ The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases The Biochemical Journal 2003 371 1013 1019 Search in Google Scholar

Munster-Kuhnel AK, Tiralongo J, Krapp S, Weinhold B, Ritz-Sedlacek V, Jacob U, et al. Structure and function of vertebrate CMP-sialic acid synthetases. Glycobiology. 2004;14: 43R–51R. Munster-KuhnelAK TiralongoJ KrappS WeinholdB Ritz-SedlacekV JacobU Structure and function of vertebrate CMP-sialic acid synthetases Glycobiology 2004 14 43R 51R Search in Google Scholar

Freeze HH, Steet R, Suzuki T, Kinoshita T, Schnaar RL. Genetic disorders of glycan degradation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 583–598. FreezeHH SteetR SuzukiT KinoshitaT SchnaarRL Genetic disorders of glycan degradation In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 583 598 Search in Google Scholar

Zimmer J. Structural features underlying recognition and translocation of extracellular polysaccharides. Interface Focus. 2019;9: 20180060. ZimmerJ Structural features underlying recognition and translocation of extracellular polysaccharides Interface Focus 2019 9 20180060 Search in Google Scholar

Chen DD, Wang ZB, Wang LX, Zhao P, Yun CH, Bai L. Structure, catalysis, chitin transport, and selective inhibition of chitin synthase. Nature Communications. 2023;14: 4776. ChenDD WangZB WangLX ZhaoP YunCH BaiL Structure, catalysis, chitin transport, and selective inhibition of chitin synthase Nature Communications 2023 14 4776 Search in Google Scholar

Greenfield LK, Whitfield C. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydrate Research. 2012;356: 12–24. GreenfieldLK WhitfieldC Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways Carbohydrate Research 2012 356 12 24 Search in Google Scholar

Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annual Review of Biochemistry. 2002;71: 635–700. RaetzCR WhitfieldC Lipopolysaccharide endotoxins Annual Review of Biochemistry 2002 71 635 700 Search in Google Scholar

Yamanaka K, Maruyama C, Takagi H, Hamano Y. Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nature Chemical Biology. 2008;4: 766–772. YamanakaK MaruyamaC TakagiH HamanoY Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase Nature Chemical Biology 2008 4 766 772 Search in Google Scholar

Shrimal S, Cherepanova NA, Gilmore R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Seminars in Cell and Developmental Biology. 2015;41: 71–78. ShrimalS CherepanovaNA GilmoreR Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum Seminars in Cell and Developmental Biology 2015 41 71 78 Search in Google Scholar

Suzuki T, Cummings RD, Aebi M, Parodi A. Glycans in glycoprotein quality control. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 529–538. SuzukiT CummingsRD AebiM ParodiA Glycans in glycoprotein quality control In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 529 538 Search in Google Scholar

Suzuki T, Yoshida Y. Ever-expanding NGLY1 biology. Journal of Biochemistry. 2022;171: 141–143. SuzukiT YoshidaY Ever-expanding NGLY1 biology Journal of Biochemistry 2022 171 141 143 Search in Google Scholar

Harada Y, Ohkawa Y, Maeda K, Taniguchi N. Glycan quality control in and out of the endoplasmic reticulum of mammalian cells. The FEBS Journal. 2022;289: 7147–7162. HaradaY OhkawaY MaedaK TaniguchiN Glycan quality control in and out of the endoplasmic reticulum of mammalian cells The FEBS Journal 2022 289 7147 7162 Search in Google Scholar

Parodi AJ, Lederkremer GZ, Mendelzon DH. Protein glycosylation in Trypanosoma cruzi. The mechanism of glycosylation and structure of protein-bound oligosaccharides. The Journal of Biological Chemistry. 1983;258: 5589–5595. ParodiAJ LederkremerGZ MendelzonDH Protein glycosylation in Trypanosoma cruzi. The mechanism of glycosylation and structure of protein-bound oligosaccharides The Journal of Biological Chemistry 1983 258 5589 5595 Search in Google Scholar

Parodi AJ. Protein glucosylation and its role in protein folding. Annual Review of Biochemistry. 2000;69: 69–93. ParodiAJ Protein glucosylation and its role in protein folding Annual Review of Biochemistry 2000 69 69 93 Search in Google Scholar

Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, et al. The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proceedings of the National Academy of Sciences of the United States of America. 2007;104: 11676–11681. BanerjeeS VishwanathP CuiJ KelleherDJ GilmoreR RobbinsPW The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation Proceedings of the National Academy of Sciences of the United States of America 2007 104 11676 11681 Search in Google Scholar

Mary B, Maurya S, Arumugam S, Kumar V, Jayandharan GR. Post-translational modifications in capsid proteins of recombinant adeno-associated virus (AAV) 1-rh10 serotypes. The FEBS Journal. 2019;286: 4964–4981. MaryB MauryaS ArumugamS KumarV JayandharanGR Post-translational modifications in capsid proteins of recombinant adeno-associated virus (AAV) 1-rh10 serotypes The FEBS Journal 2019 286 4964 4981 Search in Google Scholar

Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The importance of glycans of viral and host proteins in enveloped virus infection. Frontiers in Immunology. 2021;12: 638573. LiY LiuD WangY SuW LiuG DongW The importance of glycans of viral and host proteins in enveloped virus infection Frontiers in Immunology 2021 12 638573 Search in Google Scholar

Feng T, Zhang J, Chen Z, Pan W, Chen Z, Yan Y, et al. Glycosylation of viral proteins: implication in virus-host interaction and virulence. Virulence. 2022;13: 670–683. FengT ZhangJ ChenZ PanW ChenZ YanY Glycosylation of viral proteins: implication in virus-host interaction and virulence Virulence 2022 13 670 683 Search in Google Scholar

Akiyama H, Miller C, Patel HV, Hatch SC, Archer J, Ramirez NG, et al. Virus particle release from glycosphingolipid-enriched microdomains is essential for dendritic cell-mediated capture and transfer of HIV-1 and henipavirus. Journal of Virology. 2014;88: 8813–8825. AkiyamaH MillerC PatelHV HatchSC ArcherJ RamirezNG Virus particle release from glycosphingolipid-enriched microdomains is essential for dendritic cell-mediated capture and transfer of HIV-1 and henipavirus Journal of Virology 2014 88 8813 8825 Search in Google Scholar

Banerjee N, Mukhopadhyay S. Viral glycoproteins: biological role and application in diagnosis. Virusdisease. 2016;27: 1–11. BanerjeeN MukhopadhyayS Viral glycoproteins: biological role and application in diagnosis Virusdisease 2016 27 1 11 Search in Google Scholar

Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. Journal of Molecular Biology. 2011;410: 582–608. CheckleyMA LuttgeBG FreedEO HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation Journal of Molecular Biology 2011 410 582 608 Search in Google Scholar

Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in virus-host interactions: a structural perspective. Frontiers in Molecular Biosciences. 2021;8: 666756. MillerNL ClarkT RamanR SasisekharanR Glycans in virus-host interactions: a structural perspective Frontiers in Molecular Biosciences 2021 8 666756 Search in Google Scholar

Wagh K, Hahn BH, Korber B. Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies. Current Opinion in HIV and AIDS. 2020;15: 267–274. WaghK HahnBH KorberB Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies Current Opinion in HIV and AIDS 2020 15 267 274 Search in Google Scholar

Chauhan RP, Gordon ML. An overview of influenza a virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes. 2022;58: 255–269. ChauhanRP GordonML An overview of influenza a virus genes, protein functions, and replication cycle highlighting important updates Virus Genes 2022 58 255 269 Search in Google Scholar

Thompson AJ, Paulson JC. Adaptation of influenza viruses to human airway receptors. The Journal of Biological Chemistry. 2021;296: 100017. ThompsonAJ PaulsonJC Adaptation of influenza viruses to human airway receptors The Journal of Biological Chemistry 2021 296 100017 Search in Google Scholar

Zimmermann W, Broll H, Ehlers B, Buhk HJ, Rosenthal A, Goltz M. Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication. Journal of Virology. 2001;75: 1186–1194. ZimmermannW BrollH EhlersB BuhkHJ RosenthalA GoltzM Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication Journal of Virology 2001 75 1186 1194 Search in Google Scholar

Lete C, Markine-Goriaynoff N, Machiels B, Pang PC, Xiao X, Canis K, et al. Bovine herpesvirus 4 modulates its beta-1,6-N-acetylglucosaminyltransferase activity through alternative splicing. Journal of Virology. 2016;90: 2039–2051. LeteC Markine-GoriaynoffN MachielsB PangPC XiaoX CanisK Bovine herpesvirus 4 modulates its beta-1,6-N-acetylglucosaminyltransferase activity through alternative splicing Journal of Virology 2016 90 2039 2051 Search in Google Scholar

Jackson RJ, Hall DF, Kerr PJ. Myxoma virus encodes an alpha2,3-sialyltransferase that enhances virulence. Journal of Virology. 1999;73: 2376–2384. JacksonRJ HallDF KerrPJ Myxoma virus encodes an alpha2,3-sialyltransferase that enhances virulence Journal of Virology 1999 73 2376 2384 Search in Google Scholar

O’Reilly DR, Miller LK. A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. Science. 1989;245: 1110–1112. O’ReillyDR MillerLK A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase Science 1989 245 1110 1112 Search in Google Scholar

O’Reilly DR. Baculovirus-encoded ecdysteroid UDP-glucosyltransferases. Insect Biochemistry and Molecular Biology. 1995;25: 541–550. O’ReillyDR Baculovirus-encoded ecdysteroid UDP-glucosyltransferases Insect Biochemistry and Molecular Biology 1995 25 541 550 Search in Google Scholar

Hiraiwa N, Yabuta T, Yoritomi K, Hiraiwa M, Tanaka Y, Suzuki T, et al. Transactivation of the fucosyltransferase VII gene by human T-cell leukemia virus type 1 Tax through a variant cAMP-responsive element. Blood. 2003;101: 3615–3621. HiraiwaN YabutaT YoritomiK HiraiwaM TanakaY SuzukiT Transactivation of the fucosyltransferase VII gene by human T-cell leukemia virus type 1 Tax through a variant cAMP-responsive element Blood 2003 101 3615 3621 Search in Google Scholar

Markine-Goriaynoff N, Gillet L, Van Etten JL, Korres H, Verma N, Vanderplasschen A. Glycosyltransferases encoded by viruses. The Journal of General Virology. 2004;85: 2741–2754. Markine-GoriaynoffN GilletL Van EttenJL KorresH VermaN VanderplasschenA Glycosyltransferases encoded by viruses The Journal of General Virology 2004 85 2741 2754 Search in Google Scholar

Speciale I, Notaro A, Abergel C, Lanzetta R, Lowary TL, Molinaro A, et al. The astounding world of glycans from giant viruses. Chemical Reviews. 2022;122: 15717–15766. SpecialeI NotaroA AbergelC LanzettaR LowaryTL MolinaroA The astounding world of glycans from giant viruses Chemical Reviews 2022 122 15717 15766 Search in Google Scholar

Piacente F, De Castro C, Jeudy S, Molinaro A, Salis A, Damonte G, et al. Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars. The Journal of Biological Chemistry. 2014;289: 24428–24439. PiacenteF De CastroC JeudyS MolinaroA SalisA DamonteG Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars The Journal of Biological Chemistry 2014 289 24428 24439 Search in Google Scholar

Piacente F, Gaglianone M, Laugieri ME, Tonetti MG. The autonomous glycosylation of large DNA viruses. International Journal of Molecular Sciences. 2015;16: 29315–29328. PiacenteF GaglianoneM LaugieriME TonettiMG The autonomous glycosylation of large DNA viruses International Journal of Molecular Sciences 2015 16 29315 29328 Search in Google Scholar

Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses. 2019;12: 20. Van EttenJL AgarkovaIV DuniganDD Chloroviruses Viruses 2019 12 20 Search in Google Scholar

De Castro C, Duncan GA, Garozzo D, Molinaro A, Sturiale L, Tonetti M, et al. Biophysical approaches to solve the structures of the complex glycan shield of chloroviruses. Advances in Experimental Medicine and Biology. 2018;1104: 237–257. De CastroC DuncanGA GarozzoD MolinaroA SturialeL TonettiM Biophysical approaches to solve the structures of the complex glycan shield of chloroviruses Advances in Experimental Medicine and Biology 2018 1104 237 257 Search in Google Scholar

Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proceedings of the National Academy of Sciences of the United States of America. 2009;106: 21848–21853. BoyerM YutinN PagnierI BarrassiL FournousG EspinosaL Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms Proceedings of the National Academy of Sciences of the United States of America 2009 106 21848 21853 Search in Google Scholar

Luther KB, Hulsmeier AJ, Schegg B, Deuber SA, Raoult D, Hennet T. Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme. The Journal of Biological Chemistry. 2011;286: 43701–43709. LutherKB HulsmeierAJ ScheggB DeuberSA RaoultD HennetT Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme The Journal of Biological Chemistry 2011 286 43701 43709 Search in Google Scholar

Shah N, Hulsmeier AJ, Hochhold N, Neidhart M, Gay S, Hennet T. Exposure to mimivirus collagen promotes arthritis. Journal of Virology. 2014;88: 838–845. ShahN HulsmeierAJ HochholdN NeidhartM GayS HennetT Exposure to mimivirus collagen promotes arthritis Journal of Virology 2014 88 838 845 Search in Google Scholar

Messner P, Schaffer C, Kosma P. Bacterial cell-envelope glycoconjugates. Advances in Carbohydrate Chemistry and Biochemistry. 2013;69: 209–272. MessnerP SchafferC KosmaP Bacterial cell-envelope glycoconjugates Advances in Carbohydrate Chemistry and Biochemistry 2013 69 209 272 Search in Google Scholar

Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology. 2010;2: a000414. SilhavyTJ KahneD WalkerS The bacterial cell envelope Cold Spring Harbor Perspectives in Biology 2010 2 a000414 Search in Google Scholar

Meyer BH, Albers SV, Eichler J, Aebi M. Archaea. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 297–306. MeyerBH AlbersSV EichlerJ AebiM Archaea In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 297 306 Search in Google Scholar

Gorska-Fraczek S, Sandstrom C, Kenne L, Rybka J, Strus M, Heczko P, et al. Structural studies of the exopolysaccharide consisting of a nonasaccharide repeating unit isolated from Lactobacillus rhamnosus KL37B. Carbohydrate Research. 2011;346: 2926–2932. Gorska-FraczekS SandstromC KenneL RybkaJ StrusM HeczkoP Structural studies of the exopolysaccharide consisting of a nonasaccharide repeating unit isolated from Lactobacillus rhamnosus KL37B Carbohydrate Research 2011 346 2926 2932 Search in Google Scholar

Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB Journal. 1994;8: 217–225. RietschelET KirikaeT SchadeFU MamatU SchmidtG LoppnowH Bacterial endotoxin: molecular relationships of structure to activity and function FASEB Journal 1994 8 217 225 Search in Google Scholar

Klein G, Raina S. Regulated control of the assembly and diversity of LPS by noncoding sRNAs. BioMed Research International. 2015;2015: 153561. KleinG RainaS Regulated control of the assembly and diversity of LPS by noncoding sRNAs BioMed Research International 2015 2015 153561 Search in Google Scholar

Poxton IR. Antibodies to lipopolysaccharide. Journal of Immunological Methods. 1995;186: 1–15. PoxtonIR Antibodies to lipopolysaccharide Journal of Immunological Methods 1995 186 1 15 Search in Google Scholar

Kalynych S, Morona R, Cygler M. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiology Reviews. 2014;38: 1048–1065. KalynychS MoronaR CyglerM Progress in understanding the assembly process of bacterial O-antigen FEMS Microbiology Reviews 2014 38 1048 1065 Search in Google Scholar

Zhang X, Payne M, Kaur S, Lan R. Improved genomic identification, clustering, and serotyping of shiga toxin-producing Escherichia coli using cluster/serotype-specific gene markers. Frontiers in Cellular and Infection Microbiology. 2021;11: 772574. ZhangX PayneM KaurS LanR Improved genomic identification, clustering, and serotyping of shiga toxin-producing Escherichia coli using cluster/serotype-specific gene markers Frontiers in Cellular and Infection Microbiology 2021 11 772574 Search in Google Scholar

Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. Journal of Clinical Microbiology. 2000;38: 2465–2467. BrennerFW VillarRG AnguloFJ TauxeR SwaminathanB Salmonella nomenclature Journal of Clinical Microbiology 2000 38 2465 2467 Search in Google Scholar

Kehr JC, Dittmann E. Biosynthesis and function of extracellular glycans in cyanobacteria. Life (Basel). 2015;5: 164–180. KehrJC DittmannE Biosynthesis and function of extracellular glycans in cyanobacteria Life (Basel) 2015 5 164 180 Search in Google Scholar

Klingl A, Pickl C, Flechsler J. Archaeal cell walls. Sub Cellular Biochemistry. 2019;92: 471–493. KlinglA PicklC FlechslerJ Archaeal cell walls Sub Cellular Biochemistry 2019 92 471 493 Search in Google Scholar

Assandri MH, Malamud M, Trejo FM, Serradell MLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. Current Research in Microbial Sciences. 2023;4: 100187. AssandriMH MalamudM TrejoFM SerradellMLA S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria Current Research in Microbial Sciences 2023 4 100187 Search in Google Scholar

Seifert GJ, Strasser R, Van Damme EJM. Editorial: Plant glycobiology – a sweet world of glycans, glycoproteins, glycolipids, and carbohydrate-binding proteins. Frontiers in Plant Science. 2021;12: 751923. SeifertGJ StrasserR Van DammeEJM Editorial: Plant glycobiology – a sweet world of glycans, glycoproteins, glycolipids, and carbohydrate-binding proteins Frontiers in Plant Science 2021 12 751923 Search in Google Scholar

Fogarty CA, Harbison AM, Dugdale AR, Fadda E. How and why plants and human N-glycans are different: insight from molecular dynamics into the “glycoblocks” architecture of complex carbohydrates. Beilstein Journal of Organic Chemistry. 2020;16: 2046–2056. FogartyCA HarbisonAM DugdaleAR FaddaE How and why plants and human N-glycans are different: insight from molecular dynamics into the “glycoblocks” architecture of complex carbohydrates Beilstein Journal of Organic Chemistry 2020 16 2046 2056 Search in Google Scholar

Strasser R. Plant protein glycosylation. Glycobiology. 2016;26: 926–939. StrasserR Plant protein glycosylation Glycobiology 2016 26 926 939 Search in Google Scholar

Beihammer G, Maresch D, Altmann F, Strasser R. Glycosylphosphatidylinositol-anchor synthesis in plants: a glycobiology perspective. Frontiers in Plant Science. 2020;11: 611188. BeihammerG MareschD AltmannF StrasserR Glycosylphosphatidylinositol-anchor synthesis in plants: a glycobiology perspective Frontiers in Plant Science 2020 11 611188 Search in Google Scholar

Strasser R. Biological significance of complex N-glycans in plants and their impact on plant physiology. Frontiers in Plant Science. 2014;5: 363. StrasserR Biological significance of complex N-glycans in plants and their impact on plant physiology Frontiers in Plant Science 2014 5 363 Search in Google Scholar

Xu J, Du H, Shi H, Song J, Yu J, Zhou Y. Protein O-glycosylation regulates diverse developmental and defense processes in plants. Journal of Experimental Botany. 2023;74: 6119–6130. XuJ DuH ShiH SongJ YuJ ZhouY Protein O-glycosylation regulates diverse developmental and defense processes in plants Journal of Experimental Botany 2023 74 6119 6130 Search in Google Scholar

Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harbor Perspectives in Biology. 2011;3: a004952. SarrazinS LamannaWC EskoJD Heparan sulfate proteoglycans Cold Spring Harbor Perspectives in Biology 2011 3 a004952 Search in Google Scholar

Lei L. Polysaccharide structure: a hint from gut bacteria. Nature Plants. 2017;3: 17062. LeiL Polysaccharide structure: a hint from gut bacteria Nature Plants 2017 3 17062 Search in Google Scholar

Mohnen D. Pectin structure and biosynthesis. Current Opinion in Plant Biology. 2008;11: 266–277. MohnenD Pectin structure and biosynthesis Current Opinion in Plant Biology 2008 11 266 277 Search in Google Scholar

Atmodjo MA, Hao Z, Mohnen D. Evolving views of pectin biosynthesis. Annual Review of Plant Biology. 2013;64: 747–779. AtmodjoMA HaoZ MohnenD Evolving views of pectin biosynthesis Annual Review of Plant Biology 2013 64 747 779 Search in Google Scholar

Le Normand M, Rietzler B, Vilaplana F, Ek M. Macromolecular model of the pectic polysaccharides isolated from the bark of Norway Spruce (Picea abies). Polymers (Basel). 2021;13: 1106. Le NormandM RietzlerB VilaplanaF EkM Macromolecular model of the pectic polysaccharides isolated from the bark of Norway Spruce (Picea abies) Polymers (Basel) 2021 13 1106 Search in Google Scholar

Bonnardel F, Perez S, Lisacek F, Imberty A. Structural database for lectins and the unilectin web platform. Methods in Molecular Biology. 2020;2132: 1–14. BonnardelF PerezS LisacekF ImbertyA Structural database for lectins and the unilectin web platform Methods in Molecular Biology 2020 2132 1 14 Search in Google Scholar

Ingale AG, Hivrale AU. Plant as a plenteous reserve of lectin. Plant Signaling and Behavior. 2013;8: e26595. IngaleAG HivraleAU Plant as a plenteous reserve of lectin Plant Signaling and Behavior 2013 8 e26595 Search in Google Scholar

Alderwick LJ, Harrison J, Lloyd GS, Birch HL. The mycobacterial cell wall – peptidoglycan and arabinogalactan. Cold Spring Harbor Perspectives in Medicine. 2015;5: a021113. AlderwickLJ HarrisonJ LloydGS BirchHL The mycobacterial cell wall – peptidoglycan and arabinogalactan Cold Spring Harbor Perspectives in Medicine 2015 5 a021113 Search in Google Scholar

Endler A, Persson S. Cellulose synthases and synthesis in Arabidopsis. Molecular Plant. 2011;4: 199–211. EndlerA PerssonS Cellulose synthases and synthesis in Arabidopsis Molecular Plant 2011 4 199 211 Search in Google Scholar

Francisco R, Brasil S, Poejo J, Jaeken J, Pascoal C, Videira PA, et al. Congenital disorders of glycosylation (CDG): state of the art in 2022. Orphanet Journal of Rare Diseases. 2023;18: 329. FranciscoR BrasilS PoejoJ JaekenJ PascoalC VideiraPA Congenital disorders of glycosylation (CDG): state of the art in 2022 Orphanet Journal of Rare Diseases 2023 18 329 Search in Google Scholar

Lefeber DJ, Freeze HH, Steet R, Kinoshita T. Congenital disorders of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 599–614. LefeberDJ FreezeHH SteetR KinoshitaT Congenital disorders of glycosylation In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 599 614 Search in Google Scholar

Berninsone P, Hwang HY, Zemtseva I, Horvitz HR, Hirschberg CB. SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose. Proceedings of the National Academy of Sciences of the United States of America. 2001;98: 3738–3743. BerninsoneP HwangHY ZemtsevaI HorvitzHR HirschbergCB SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose Proceedings of the National Academy of Sciences of the United States of America 2001 98 3738 3743 Search in Google Scholar

Koderi Valappil S, Shetty P, Deim Z, Terhes G, Urban E, Vaczi S, et al. Survival comes at a cost: a coevolution of phage and its host leads to phage resistance and antibiotic sensitivity of pseudomonas aeruginosa multidrug resistant strains. Frontiers in Microbiology. 2021;12: 783722. Koderi ValappilS ShettyP DeimZ TerhesG UrbanE VacziS Survival comes at a cost: a coevolution of phage and its host leads to phage resistance and antibiotic sensitivity of pseudomonas aeruginosa multidrug resistant strains Frontiers in Microbiology 2021 12 783722 Search in Google Scholar

Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiology Reviews. 2014;38: 916–931. KoskellaB BrockhurstMA Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities FEMS Microbiology Reviews 2014 38 916 931 Search in Google Scholar

Rothschild-Rodriguez D, Hedges M, Kaplan M, Karav S, Nobrega FL. Phage-encoded carbohydrate-interacting proteins in the human gut. Frontiers in Microbiology. 2022;13: 1083208. Rothschild-RodriguezD HedgesM KaplanM KaravS NobregaFL Phage-encoded carbohydrate-interacting proteins in the human gut Frontiers in Microbiology 2022 13 1083208 Search in Google Scholar

Heidelberger M, Avery OT. The soluble specific substance of pneumococcus. The Journal of Experimental Medicine. 1923;38: 73–79. HeidelbergerM AveryOT The soluble specific substance of pneumococcus The Journal of Experimental Medicine 1923 38 73 79 Search in Google Scholar

Avery OT, Goebel WF. Chemoimmunological studies on the soluble specific substance of pneumococcus: I. The isolation and properties of the acetyl polysaccharide of pneumococcus type I. The Journal of Experimental Medicine. 1933;58: 731–755. AveryOT GoebelWF Chemoimmunological studies on the soluble specific substance of pneumococcus: I. The isolation and properties of the acetyl polysaccharide of pneumococcus type I The Journal of Experimental Medicine 1933 58 731 755 Search in Google Scholar

Griffith F. The significance of pneumococcal types. The Journal of Hygiene. 1928;27: 113–159. GriffithF The significance of pneumococcal types The Journal of Hygiene 1928 27 113 159 Search in Google Scholar

Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. The Journal of General Physiology. 1952;36: 39–56. HersheyAD ChaseM Independent functions of viral protein and nucleic acid in growth of bacteriophage The Journal of General Physiology 1952 36 39 56 Search in Google Scholar

Cobb M. Oswald avery, DNA, and the transformation of biology. Current Biology. 2014;24: R55–R60. CobbM Oswald avery, DNA, and the transformation of biology Current Biology 2014 24 R55 R60 Search in Google Scholar

Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type Iii. The Journal of Experimental Medicine. 1944;79: 137–158. AveryOT MacleodCM McCartyM Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type Iii The Journal of Experimental Medicine 1944 79 137 158 Search in Google Scholar

Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiology Letters. 2016;363: fnw002. Bertozzi SilvaJ StormsZ SauvageauD Host receptors for bacteriophage adsorption FEMS Microbiology Letters 2016 363 fnw002 Search in Google Scholar

Dunstan RA, Bamert RS, Tan KS, Imbulgoda U, Barlow CK, Taiaroa G, et al. Epitopes in the capsular polysaccharide and the porin OmpK36 receptors are required for bacteriophage infection of Klebsiella pneumoniae. Cell Reports. 2023;42: 112551. DunstanRA BamertRS TanKS ImbulgodaU BarlowCK TaiaroaG Epitopes in the capsular polysaccharide and the porin OmpK36 receptors are required for bacteriophage infection of Klebsiella pneumoniae Cell Reports 2023 42 112551 Search in Google Scholar

Filik K, Szermer-Olearnik B, Oleksy S, Brykala J, Brzozowska E. Bacteriophage tail proteins as a tool for bacterial pathogen recognition-a literature review. Antibiotics (Basel). 2022;11: 555. FilikK Szermer-OlearnikB OleksyS BrykalaJ BrzozowskaE Bacteriophage tail proteins as a tool for bacterial pathogen recognition-a literature review Antibiotics (Basel) 2022 11 555 Search in Google Scholar

Islam MZ, Fokine A, Mahalingam M, Zhang Z, Garcia-Doval C, van Raaij MJ, et al. Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber. PLoS Pathogens. 2019;15: e1008193. IslamMZ FokineA MahalingamM ZhangZ Garcia-DovalC van RaaijMJ Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber PLoS Pathogens 2019 15 e1008193 Search in Google Scholar

Wilson JH, Luftig RB, Wood WB. Interaction of bacteriophage T4 tail fiber components with a lipopolysaccharide fraction from Escherichia coli. Journal of Molecular Biology. 1970;51:423–434. WilsonJH LuftigRB WoodWB Interaction of bacteriophage T4 tail fiber components with a lipopolysaccharide fraction from Escherichia coli Journal of Molecular Biology 1970 51 423 434 Search in Google Scholar

Borin JM, Lee JJ, Lucia-Sanz A, Gerbino KR, Weitz JS, Meyer JR. Rapid bacteria-phage coevolution drives the emergence of multiscale networks. Science. 2023;382: 674–678. BorinJM LeeJJ Lucia-SanzA GerbinoKR WeitzJS MeyerJR Rapid bacteria-phage coevolution drives the emergence of multiscale networks Science 2023 382 674 678 Search in Google Scholar

Bishop JR, Gagneux P. Evolution of carbohydrate antigens – microbial forces shaping host glycomes? Glycobiology. 2007;17: 23R–34R. BishopJR GagneuxP Evolution of carbohydrate antigens – microbial forces shaping host glycomes? Glycobiology 2007 17 23R 34R Search in Google Scholar

Sommer R, Makshakova ON, Wohlschlager T, Hutin S, Marsh M, Titz A, et al. Crystal structures of fungal tectonin in complex with O-methylated glycans suggest key role in innate immune defense. Structure. 2018;26: 391–402.e4. SommerR MakshakovaON WohlschlagerT HutinS MarshM TitzA Crystal structures of fungal tectonin in complex with O-methylated glycans suggest key role in innate immune defense Structure 2018 26 391 402.e4 Search in Google Scholar

Hilbert ZA, Haffener PE, Young HJ, Schwiesow MJ. W, Leffler EM, Elde NC. Rapid evolution of glycan recognition receptors reveals an axis of host-microbe arms races beyond canonical protein-protein interfaces. Genome Biology and Evolution. 2023;15: evad119. HilbertZA HaffenerPE YoungHJ SchwiesowMJ. W LefflerEM EldeNC Rapid evolution of glycan recognition receptors reveals an axis of host-microbe arms races beyond canonical protein-protein interfaces Genome Biology and Evolution 2023 15 evad119 Search in Google Scholar

Chang YC, Nizet V. Siglecs at the host-pathogen interface. Advances in Experimental Medicine and Biology. 2020;1204: 197–214. ChangYC NizetV Siglecs at the host-pathogen interface Advances in Experimental Medicine and Biology 2020 1204 197 214 Search in Google Scholar

Bunte MJM, Schots A, Kammenga JE, Wilbers RHP. Helminth glycans at the host-parasite interface and their potential for developing novel therapeutics. Frontiers in Molecular Biosciences. 2021;8: 807821. BunteMJM SchotsA KammengaJE WilbersRHP Helminth glycans at the host-parasite interface and their potential for developing novel therapeutics Frontiers in Molecular Biosciences 2021 8 807821 Search in Google Scholar

Hokke CH, van Diepen A. Helminth glycomics – glycan repertoires and host-parasite interactions. Molecular and Biochemical Parasitology. 2017;215: 47–57. HokkeCH van DiepenA Helminth glycomics – glycan repertoires and host-parasite interactions Molecular and Biochemical Parasitology 2017 215 47 57 Search in Google Scholar

Eckmair B, Gao C, Mehta AY, Dutkiewicz Z, Vanbeselaere J, Cummings RD, et al. Recognition of highly branched N-glycans of the porcine whipworm by the immune system. Molecular and Cellular Proteomics. 2024;23: 100711. EckmairB GaoC MehtaAY DutkiewiczZ VanbeselaereJ CummingsRD Recognition of highly branched N-glycans of the porcine whipworm by the immune system Molecular and Cellular Proteomics 2024 23 100711 Search in Google Scholar

van Die I, Cummings RD. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology. 2010;20: 2–12. van DieI CummingsRD Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology 2010 20 2 12 Search in Google Scholar

Rappuoli R, De Gregorio E, Costantino P. On the mechanisms of conjugate vaccines. Proceedings of the National Academy of Sciences of the United States of America. 2019;116: 14–16. RappuoliR De GregorioE CostantinoP On the mechanisms of conjugate vaccines Proceedings of the National Academy of Sciences of the United States of America 2019 116 14 16 Search in Google Scholar

Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology. 2012;10: 323–335. KoropatkinNM CameronEA MartensEC How glycan metabolism shapes the human gut microbiota Nature Reviews Microbiology 2012 10 323 335 Search in Google Scholar

Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nature Reviews Gastroenterology and Hepatology. 2020;17: 597–617. KudelkaMR StowellSR CummingsRD NeishAS Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD Nature Reviews Gastroenterology and Hepatology 2020 17 597 617 Search in Google Scholar

Fekete E, Buret AG. The role of mucin O-glycans in microbiota dysbiosis, intestinal homeostasis, and host-pathogen interactions. American Journal of Physiology Gastrointestinal and Liver Physiology. 2023;324: G452–G465. FeketeE BuretAG The role of mucin O-glycans in microbiota dysbiosis, intestinal homeostasis, and host-pathogen interactions American Journal of Physiology Gastrointestinal and Liver Physiology 2023 324 G452 G465 Search in Google Scholar

Kuziel GA, Rakoff-Nahoum S. The gut microbiome. Current Biology. 2022;32: R257–R264. KuzielGA Rakoff-NahoumS The gut microbiome Current Biology 2022 32 R257 R264 Search in Google Scholar

Couchman JR, Pataki CA. An introduction to proteoglycans and their localization. The Journal of Histochemistry and Cytochemistry. 2012;60: 885–897. CouchmanJR PatakiCA An introduction to proteoglycans and their localization The Journal of Histochemistry and Cytochemistry 2012 60 885 897 Search in Google Scholar

Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Frontiers in Cell and Developmental Biology. 2023;11: 1182524. MirouseV Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex Frontiers in Cell and Developmental Biology 2023 11 1182524 Search in Google Scholar

Moller SR, Yi X, Velasquez SM, Gille S, Hansen PLM, Poulsen CP, et al. Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Scientific Reports. 2017;7: 45341. MollerSR YiX VelasquezSM GilleS HansenPLM PoulsenCP Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD Scientific Reports 2017 7 45341 Search in Google Scholar

Leszczuk A, Kalaitzis P, Kulik J, Zdunek A. Review: structure and modifications of arabinogalactan proteins (AGPs). BMC Plant Biology. 2023;23:45. LeszczukA KalaitzisP KulikJ ZdunekA Review: structure and modifications of arabinogalactan proteins (AGPs) BMC Plant Biology 2023 23 45 Search in Google Scholar

Okuma H, Hord JM, Chandel I, Venzke D, Anderson ME, Walimbe AS, et al. N-terminal domain on dystroglycan enables LARGE1 to extend matriglycan on alpha-dystroglycan and prevents muscular dystrophy. Elife. 2023;12: e82811. OkumaH HordJM ChandelI VenzkeD AndersonME WalimbeAS N-terminal domain on dystroglycan enables LARGE1 to extend matriglycan on alpha-dystroglycan and prevents muscular dystrophy Elife 2023 12 e82811 Search in Google Scholar

Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology. 2023;33: 911–926. KoffM Monagas-ValentinP NovikovB ChandelI PaninV Protein O-mannosylation: one sugar, several pathways, many functions Glycobiology 2023 33 911 926 Search in Google Scholar

Endo T. Glycobiology of alpha-dystroglycan and muscular dystrophy. Journal of Biochemistry. 2015;157: 1–12. EndoT Glycobiology of alpha-dystroglycan and muscular dystrophy Journal of Biochemistry 2015 157 1 12 Search in Google Scholar

Dempsey CE, Bigotti MG, Adams JC, Brancaccio A. Analysis of alpha-dystroglycan/LG domain binding modes: investigating protein motifs that regulate the affinity of isolated LG domains. Frontiers in Molecular Biosciences. 2019;6: 18. DempseyCE BigottiMG AdamsJC BrancaccioA Analysis of alpha-dystroglycan/LG domain binding modes: investigating protein motifs that regulate the affinity of isolated LG domains Frontiers in Molecular Biosciences 2019 6 18 Search in Google Scholar

Jinno A, Park PW. Role of glycosaminoglycans in infectious disease. Methods in Molecular Biology. 2015;1229: 567–585. JinnoA ParkPW Role of glycosaminoglycans in infectious disease Methods in Molecular Biology 2015 1229 567 585 Search in Google Scholar

Joseph S, Campbell KP. Lassa fever virus binds matriglycan-a polymer of alternating xylose and glucuronate-on alpha-dystroglycan. Viruses. 2021;13: 1679. JosephS CampbellKP Lassa fever virus binds matriglycan-a polymer of alternating xylose and glucuronate-on alpha-dystroglycan Viruses 2021 13 1679 Search in Google Scholar

Rambukkana A, Yamada H, Zanazzi G, Mathus T, Salzer JL, Yurchenco PD, et al. Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science. 1998;282: 2076–2079. RambukkanaA YamadaH ZanazziG MathusT SalzerJL YurchencoPD Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae Science 1998 282 2076 2079 Search in Google Scholar

Maeda K, Okuda Y, Enomoto G, Watanabe S, Ikeuchi M. Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium Synechocystis sp. strain PCC 6803. Elife. 2021;10: e66538. MaedaK OkudaY EnomotoG WatanabeS IkeuchiM Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium Synechocystis sp. strain PCC 6803 Elife 2021 10 e66538 Search in Google Scholar

Limoli DH, Jones CJ, Wozniak DJ. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum. 2015;3. LimoliDH JonesCJ WozniakDJ Bacterial extracellular polysaccharides in biofilm formation and function Microbiology Spectrum 2015 3 Search in Google Scholar

Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Molecular Biology and Evolution. 2014;31: 1102–1120. RiesgoA FarrarN WindsorPJ GiribetG LeysSP The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges Molecular Biology and Evolution 2014 31 1102 1120 Search in Google Scholar

Becerro MA, Uriz MJ, Maldonado M, Turon X. Advances in sponge science: phylogeny, systematics, ecology. Preface. Advances in Marine Biology. 2012;61: ix–x. BecerroMA UrizMJ MaldonadoM TuronX Advances in sponge science: phylogeny, systematics, ecology. Preface Advances in Marine Biology 2012 61 ix x Search in Google Scholar

Ehrlich H, Wysokowski M, Zoltowska-Aksamitowska S, Petrenko I, Jesionowski T. Collagens of poriferan origin. Marine Drugs. 2018;16: 79. EhrlichH WysokowskiM Zoltowska-AksamitowskaS PetrenkoI JesionowskiT Collagens of poriferan origin Marine Drugs 2018 16 79 Search in Google Scholar

Jesionowski T, Norman M, Zoltowska-Aksamitowska S, Petrenko I, Joseph Y, Ehrlich H. Marine spongin: naturally prefabricated 3d scaffold-based biomaterial. Marine Drugs. 2018;16: 88. JesionowskiT NormanM Zoltowska-AksamitowskaS PetrenkoI JosephY EhrlichH Marine spongin: naturally prefabricated 3d scaffold-based biomaterial Marine Drugs 2018 16 88 Search in Google Scholar

Bateman JF, Shoulders MD, Lamande SR. Collagen misfolding mutations: the contribution of the unfolded protein response to the molecular pathology. Connective Tissue Research. 2022;63: 210–227. BatemanJF ShouldersMD LamandeSR Collagen misfolding mutations: the contribution of the unfolded protein response to the molecular pathology Connective Tissue Research 2022 63 210 227 Search in Google Scholar

Katzman RL, Halford MH, Reinhold VN, Jeanloz RW. Isolation and structure determination of glucosylgalactosylhydroxylysine from sponge and sea anemone collagen. Biochemistry. 1972;11: 1161–1167. KatzmanRL HalfordMH ReinholdVN JeanlozRW Isolation and structure determination of glucosylgalactosylhydroxylysine from sponge and sea anemone collagen Biochemistry 1972 11 1161 1167 Search in Google Scholar

Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT, Krishna NR, et al. Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. The Journal of Biological Chemistry. 2004;279: 30945–30953. DaubenspeckJM ZengH ChenP DongS SteichenCT KrishnaNR Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium The Journal of Biological Chemistry 2004 279 30945 30953 Search in Google Scholar

Li RC, Wong MY, DiChiara AS, Hosseini AS, Shoulders MD. Collagen’s enigmatic, highly conserved N-glycan has an essential proteostatic function. Proceedings of the National Academy of Sciences of the United States of America. 2021;118: e2026608118. LiRC WongMY DiChiaraAS HosseiniAS ShouldersMD Collagen’s enigmatic, highly conserved N-glycan has an essential proteostatic function Proceedings of the National Academy of Sciences of the United States of America 2021 118 e2026608118 Search in Google Scholar

Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. The ISME Journal. 2013;7: 2287–2300. KamkeJ SczyrbaA IvanovaN SchwientekP RinkeC MavromatisK Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges The ISME Journal 2013 7 2287 2300 Search in Google Scholar

Wilson HV. On some phenomena of coalescene and regeneration in sponges. Journal of Experimental Zoology. 1907;5: 245–258. WilsonHV On some phenomena of coalescene and regeneration in sponges Journal of Experimental Zoology 1907 5 245 258 Search in Google Scholar

Ereskovsky A, Borisenko IE, Bolshakov FV, Lavrov AI. Whole-body regeneration in sponges: diversity, fine mechanisms, and future prospects. Genes (Basel). 2021;12: 506. EreskovskyA BorisenkoIE BolshakovFV LavrovAI Whole-body regeneration in sponges: diversity, fine mechanisms, and future prospects Genes (Basel) 2021 12 506 Search in Google Scholar

Jarchow J, Burger MM. Species-specific association of the cell-aggregation molecule mediates recognition in marine sponges. Cell Adhesion and Communication. 1998;6: 405–414. JarchowJ BurgerMM Species-specific association of the cell-aggregation molecule mediates recognition in marine sponges Cell Adhesion and Communication 1998 6 405 414 Search in Google Scholar

Vilanova E, Ciodaro PJ, Bezerra FF, Santos GRC, Valle-Delgado JJ, Anselmetti D, et al. Adhesion of freshwater sponge cells mediated by carbohydrate-carbohydrate interactions requires low environmental calcium. Glycobiology. 2020;30: 710–721. VilanovaE CiodaroPJ BezerraFF SantosGRC Valle-DelgadoJJ AnselmettiD Adhesion of freshwater sponge cells mediated by carbohydrate-carbohydrate interactions requires low environmental calcium Glycobiology 2020 30 710 721 Search in Google Scholar

Vilanova E, Coutinho CC, Mourao PA. Sulfated polysaccharides from marine sponges (Porifera): an ancestor cell-cell adhesion event based on the carbohydrate-carbohydrate interaction. Glycobiology. 2009;19: 860–867. VilanovaE CoutinhoCC MouraoPA Sulfated polysaccharides from marine sponges (Porifera): an ancestor cell-cell adhesion event based on the carbohydrate-carbohydrate interaction Glycobiology 2009 19 860 867 Search in Google Scholar

Vilanova E, Coutinho C, Maia G, Mourao PA. Sulfated polysaccharides from marine sponges: conspicuous distribution among different cell types and involvement on formation of in vitro cell aggregates. Cell and Tissue Research. 2010;340: 523–531. VilanovaE CoutinhoC MaiaG MouraoPA Sulfated polysaccharides from marine sponges: conspicuous distribution among different cell types and involvement on formation of in vitro cell aggregates Cell and Tissue Research 2010 340 523 531 Search in Google Scholar

Grice LF, Gauthier MEA, Roper KE, Fernandez-Busquets X, Degnan SM, Degnan BM. Origin and evolution of the sponge aggregation factor gene family. Molecular Biology and Evolution. 2017;34: 1083–1099. GriceLF GauthierMEA RoperKE Fernandez-BusquetsX DegnanSM DegnanBM Origin and evolution of the sponge aggregation factor gene family Molecular Biology and Evolution 2017 34 1083 1099 Search in Google Scholar

Bucior I, Scheuring S, Engel A, Burger MM. Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition. The Journal of Cell Biology. 2004;165: 529–537. BuciorI ScheuringS EngelA BurgerMM Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition The Journal of Cell Biology 2004 165 529 537 Search in Google Scholar

Gagneux P, Hennet T, Varki A. Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 79–92. GagneuxP HennetT VarkiA Biological functions of glycans In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 79 92 Search in Google Scholar

Dennis JW, Granovsky M, Warren CE. Protein glycosylation in development and disease. Bioessays. 1999;21: 412–421. DennisJW GranovskyM WarrenCE Protein glycosylation in development and disease Bioessays 1999 21 412 421 Search in Google Scholar

Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nature Reviews Nephrology. 2019;15: 346–366. ReilyC StewartTJ RenfrowMB NovakJ Glycosylation in health and disease Nature Reviews Nephrology 2019 15 346 366 Search in Google Scholar

Colley KJ, Varki A, Haltiwanger RS, Kinoshita T. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 43–52. ColleyKJ VarkiA HaltiwangerRS KinoshitaT Cellular organization of glycosylation In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 43 52 Search in Google Scholar

Wandall HH, Nielsen MAI, King-Smith S, de Haan N, Bagdonaite I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. The FEBS Journal. 2021;288: 7183–7212. WandallHH NielsenMAI King-SmithS de HaanN BagdonaiteI Global functions of O-glycosylation: promises and challenges in O-glycobiology The FEBS Journal 2021 288 7183 7212 Search in Google Scholar

Narimatsu Y, Joshi HJ, Nason R, Van Coillie J, Karlsson R, Sun L, et al. An atlas of human glycosylation pathways enables display of the human glycome by gene engineered cells. Molecular Cell. 2019;75: 394–407.e5. NarimatsuY JoshiHJ NasonR Van CoillieJ KarlssonR SunL An atlas of human glycosylation pathways enables display of the human glycome by gene engineered cells Molecular Cell 2019 75 394 407.e5 Search in Google Scholar

Cummings RD. Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconjugate Journal. 2019;36: 241–257. CummingsRD Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling Glycoconjugate Journal 2019 36 241 257 Search in Google Scholar

Terrapon N, Henrissat B, Aoki-Kinoshita KF, Surolia A, Stanley P. A genomic view of glycobiology. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 93–102. TerraponN HenrissatB Aoki-KinoshitaKF SuroliaA StanleyP A genomic view of glycobiology In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 93 102 Search in Google Scholar

An HJ, Froehlich JW, Lebrilla CB. Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Current Opinion in Chemical Biology. 2009;13: 421–426. AnHJ FroehlichJW LebrillaCB Determination of glycosylation sites and site-specific heterogeneity in glycoproteins Current Opinion in Chemical Biology 2009 13 421 426 Search in Google Scholar

Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446: 1030–1037. BishopJR SchukszM EskoJD Heparan sulphate proteoglycans fine-tune mammalian physiology Nature 2007 446 1030 1037 Search in Google Scholar

Cummings RD. The repertoire of glycan determinants in the human glycome. Molecular Biosystems. 2009;5: 1087–1104. CummingsRD The repertoire of glycan determinants in the human glycome Molecular Biosystems 2009 5 1087 1104 Search in Google Scholar

Galili U. Biosynthesis of alpha-Gal Epitopes (Galalpha1-3Galbeta1-4GlcNAc-R) and their unique potential in future alpha-Gal therapies. Frontiers in Molecular Biosciences. 2021;8: 746883. GaliliU Biosynthesis of alpha-Gal Epitopes (Galalpha1-3Galbeta1-4GlcNAc-R) and their unique potential in future alpha-Gal therapies Frontiers in Molecular Biosciences 2021 8 746883 Search in Google Scholar

Altman MO, Gagneux P. Absence of Neu5Gc and presence of Anti-Neu5Gc antibodies in humans-an evolutionary perspective. Frontiers in Immunology. 2019;10: 789. AltmanMO GagneuxP Absence of Neu5Gc and presence of Anti-Neu5Gc antibodies in humans-an evolutionary perspective Frontiers in Immunology 2019 10 789 Search in Google Scholar

Durham SD, Wei Z, Lemay DG, Lange MC, Barile D. Creation of a milk oligosaccharide database, MilkOligoDB, reveals common structural motifs and extensive diversity across mammals. Scientific Reports. 2023;13: 10345. DurhamSD WeiZ LemayDG LangeMC BarileD Creation of a milk oligosaccharide database, MilkOligoDB, reveals common structural motifs and extensive diversity across mammals Scientific Reports 2023 13 10345 Search in Google Scholar

Segurel L, Gao Z, Przeworski M. Ancestry runs deeper than blood: the evolutionary history of ABO points to cryptic variation of functional importance. Bioessays. 2013;35: 862–867. SegurelL GaoZ PrzeworskiM Ancestry runs deeper than blood: the evolutionary history of ABO points to cryptic variation of functional importance Bioessays 2013 35 862 867 Search in Google Scholar

Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Annals of Human Biology. 2013;40: 463–471. BianconiE PiovesanA FacchinF BeraudiA CasadeiR FrabettiF An estimation of the number of cells in the human body Annals of Human Biology 2013 40 463 471 Search in Google Scholar

Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164: 337–340. SenderR FuchsS MiloR Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans Cell 2016 164 337 340 Search in Google Scholar

Roy AL, Conroy RS. Toward mapping the human body at a cellular resolution. Molecular Biology of the Cell. 2018;29: 1779–1785. RoyAL ConroyRS Toward mapping the human body at a cellular resolution Molecular Biology of the Cell 2018 29 1779 1785 Search in Google Scholar

Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and integrin regulation in cancer. Trends in Cancer. 2018;4: 537–552. MarsicoG RussoL QuondamatteoF PanditA Glycosylation and integrin regulation in cancer Trends in Cancer 2018 4 537 552 Search in Google Scholar

Larsen ISB, Narimatsu Y, Joshi HJ, Siukstaite L, Harrison OJ, Brasch J, et al. Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proceedings of the National Academy of Sciences of the United States of America. 2017;114: 11163–11168. LarsenISB NarimatsuY JoshiHJ SiukstaiteL HarrisonOJ BraschJ Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins Proceedings of the National Academy of Sciences of the United States of America 2017 114 11163 11168 Search in Google Scholar

Merleev AA, Park D, Xie Y, Kailemia MJ, Xu G, Ruhaak LR, et al. A site-specific map of the human plasma glycome and its age and gender-associated alterations. Scientific Reports. 2020;10: 17505. MerleevAA ParkD XieY KailemiaMJ XuG RuhaakLR A site-specific map of the human plasma glycome and its age and gender-associated alterations Scientific Reports 2020 10 17505 Search in Google Scholar

Thomes L, Karlsson V, Lundstrom J, Bojar D. Mammalian milk glycomes: connecting the dots between evolutionary conservation and biosynthetic pathways. Cell Reports. 2023;42: 112710. ThomesL KarlssonV LundstromJ BojarD Mammalian milk glycomes: connecting the dots between evolutionary conservation and biosynthetic pathways Cell Reports 2023 42 112710 Search in Google Scholar

de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, et al. Human milk: from complex tailored nutrition to bioactive impact on child cognition and behavior. Critical Reviews in Food Science and Nutrition. 2023;63: 7945–7982. de WeerthC AatsinkiAK AzadMB BartolFF BodeL ColladoMC Human milk: from complex tailored nutrition to bioactive impact on child cognition and behavior Critical Reviews in Food Science and Nutrition 2023 63 7945 7982 Search in Google Scholar

Turiak L, Sugar S, Acs A, Toth G, Gomory A, Telekes A, et al. Site-specific N-glycosylation of HeLa cell glycoproteins. Scientific Reports. 2019;9: 14822. TuriakL SugarS AcsA TothG GomoryA TelekesA Site-specific N-glycosylation of HeLa cell glycoproteins Scientific Reports 2019 9 14822 Search in Google Scholar

Uhler R, Popa-Wagner R, Kroning M, Brehm A, Rennert P, Seifried A, et al. Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with human N-glycosylation and improved pharmacokinetics. Glycobiology. 2021;31: 859–872. UhlerR Popa-WagnerR KroningM BrehmA RennertP SeifriedA Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with human N-glycosylation and improved pharmacokinetics Glycobiology 2021 31 859 872 Search in Google Scholar

Wang D, Kuzyk V, Madunic K, Zhang T, Mayboroda OA, Wuhrer M, et al. In-depth analysis of the N-glycome of colorectal cancer cell lines. International Journal of Molecular Sciences. 2023;24: 4842. WangD KuzykV MadunicK ZhangT MayborodaOA WuhrerM In-depth analysis of the N-glycome of colorectal cancer cell lines International Journal of Molecular Sciences 2023 24 4842 Search in Google Scholar

Klaric TS, Gudelj I, Santpere G, Novokmet M, Vuckovic F, Ma S, et al. Human-specific features and developmental dynamics of the brain N-glycome. Science Advances. 2023;9: eadg2615. KlaricTS GudeljI SantpereG NovokmetM VuckovicF MaS Human-specific features and developmental dynamics of the brain N-glycome Science Advances 2023 9 eadg2615 Search in Google Scholar

Suttapitugsakul S, Stavenhagen K, Donskaya S, Bennett DA, Mealer RG, Seyfried NT, et al. Glycoproteomics landscape of asymptomatic and symptomatic human Alzheimer’s disease brain. Molecular and Cellular Proteomics. 2022;21: 100433. SuttapitugsakulS StavenhagenK DonskayaS BennettDA MealerRG SeyfriedNT Glycoproteomics landscape of asymptomatic and symptomatic human Alzheimer’s disease brain Molecular and Cellular Proteomics 2022 21 100433 Search in Google Scholar

Lee J, Ha S, Kim M, Kim SW, Yun J, Ozcan S, et al. Spatial and temporal diversity of glycome expression in mammalian brain. Proceedings of the National Academy of Sciences of the United States of America. 2020;117: 28743–28753. LeeJ HaS KimM KimSW YunJ OzcanS Spatial and temporal diversity of glycome expression in mammalian brain Proceedings of the National Academy of Sciences of the United States of America 2020 117 28743 28753 Search in Google Scholar

Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, et al. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nature Communications. 2022;13: 275. WilliamsSE NoelM LehouxS CetinbasM XavierRJ SadreyevRI Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues Nature Communications 2022 13 275 Search in Google Scholar

Helm J, Hirtler L, Altmann F. Towards mapping of the human brain N-glycome with standardized graphitic carbon chromatography. Biomolecules. 2022;12: 85. HelmJ HirtlerL AltmannF Towards mapping of the human brain N-glycome with standardized graphitic carbon chromatography Biomolecules 2022 12 85 Search in Google Scholar

Xiao K, Han Y, Tian Z. Large-scale identification and visualization of human liver N-glycome enriched from LO2 cells. Anal BioAnalytical Chemistry. 2018;410: 4195–4202. XiaoK HanY TianZ Large-scale identification and visualization of human liver N-glycome enriched from LO2 cells Anal BioAnalytical Chemistry 2018 410 4195 4202 Search in Google Scholar

Kavanaugh D, O’Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal glycome and its modulation by diet and nutrition. Nutrition Reviews. 2015;73: 359–375. KavanaughD O’CallaghanJ KilcoyneM KaneM JoshiL HickeyRM The intestinal glycome and its modulation by diet and nutrition Nutrition Reviews 2015 73 359 375 Search in Google Scholar

Ashwood C, Pratt B, MacLean BX, Gundry RL, Packer NH. Standardization of PGC-LC-MS-based glycomics for sample specific glycotyping. The Analyst. 2019;144: 3601–3612. AshwoodC PrattB MacLeanBX GundryRL PackerNH Standardization of PGC-LC-MS-based glycomics for sample specific glycotyping The Analyst 2019 144 3601 3612 Search in Google Scholar

Riley NM, Bertozzi CR, Pitteri SJ. A pragmatic guide to enrichment strategies for mass spectrometry-based glycoproteomics. Molecular and Cellular Proteomics. 2021;20: 100029. RileyNM BertozziCR PitteriSJ A pragmatic guide to enrichment strategies for mass spectrometry-based glycoproteomics Molecular and Cellular Proteomics 2021 20 100029 Search in Google Scholar

Wesener DA, Dugan A, Kiessling LL. Recognition of microbial glycans by soluble human lectins. Current Opinion in Structural Biology. 2017;44: 168–178. WesenerDA DuganA KiesslingLL Recognition of microbial glycans by soluble human lectins Current Opinion in Structural Biology 2017 44 168 178 Search in Google Scholar

Liu FT, Stowell SR. The role of galectins in immunity and infection. Nature Reviews Immunology. 2023;23: 479–494. LiuFT StowellSR The role of galectins in immunity and infection Nature Reviews Immunology 2023 23 479 494 Search in Google Scholar

Drickamer K, Taylor ME. Evolving views of protein glycosylation. Trends in Biochemical Sciences. 1998;23: 321–324. DrickamerK TaylorME Evolving views of protein glycosylation Trends in Biochemical Sciences 1998 23 321 324 Search in Google Scholar

Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, et al. Glycans are a novel biomarker of chronological and biological ages. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2014;69: 779–789. KristicJ VuckovicF MenniC KlaricL KeserT BeceheliI Glycans are a novel biomarker of chronological and biological ages The Journals of Gerontology Series A, Biological Sciences and Medical Sciences 2014 69 779 789 Search in Google Scholar

Lado-Baleato O, Torre J, O’Flaherty R, Alonso-Sampedro M, Carballo I, Fernández-Merino C, et al. Age-Related changes in serum N-glycome in men and women—clusters associated with comorbidity. Biomolecules. 2024;14: 17. Lado-BaleatoO TorreJ O’FlahertyR Alonso-SampedroM CarballoI Fernández-MerinoC Age-Related changes in serum N-glycome in men and women—clusters associated with comorbidity Biomolecules 2024 14 17 Search in Google Scholar

Azad MB, Robertson B, Atakora F, Becker AB, Subbarao P, Moraes TJ, et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. The Journal of Nutrition. 2018;148: 1733–1742. AzadMB RobertsonB AtakoraF BeckerAB SubbaraoP MoraesTJ Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices The Journal of Nutrition 2018 148 1733 1742 Search in Google Scholar

Shi Y, Han B, Zhang L, Zhou P. Comprehensive identification and absolute quantification of milk oligosaccharides in different species. Journal of Agricultural and Food Chemistry. 2021;69: 15585–15597. ShiY HanB ZhangL ZhouP Comprehensive identification and absolute quantification of milk oligosaccharides in different species Journal of Agricultural and Food Chemistry 2021 69 15585 15597 Search in Google Scholar

Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, et al. Expression system for structural and functional studies of human glycosylation enzymes. Nature Chemical Biology. 2018;14: 156–162. MoremenKW RamiahA StuartM SteelJ MengL ForouharF Expression system for structural and functional studies of human glycosylation enzymes Nature Chemical Biology 2018 14 156 162 Search in Google Scholar

Aoki-Kinoshita KF, Campbell MP, Lisacek F, Neelamegham S, York WS, Packer NH. Glycoinformatics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 705–718. Aoki-KinoshitaKF CampbellMP LisacekF NeelameghamS YorkWS PackerNH Glycoinformatics In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th Ed. Cold Spring Harbor (NY) 2022 705 718 Search in Google Scholar

Muthana SM, Campbell CT, Gildersleeve JC. Modifications of glycans: biological significance and therapeutic opportunities. ACS Chemical Biology. 2012;7: 31–43. MuthanaSM CampbellCT GildersleeveJC Modifications of glycans: biological significance and therapeutic opportunities ACS Chemical Biology 2012 7 31 43 Search in Google Scholar

Sharapov SZ, Timoshchuk AN, Aulchenko YS. Genetic control of N-glycosylation of human blood plasma proteins. Vavilovskii Zhurnal Genet Selektsii. 2023;27: 224–239. SharapovSZ TimoshchukAN AulchenkoYS Genetic control of N-glycosylation of human blood plasma proteins Vavilovskii Zhurnal Genet Selektsii 2023 27 224 239 Search in Google Scholar

Jame-Chenarboo F, Ng HH, Macdonald D, Mahal LK. High-throughput analysis reveals miRNA upregulating alpha-2,6-sialic acid through direct miRNA-mRNA interactions. American Chemical Society Central Science. 2022;8: 1527–1536. Jame-ChenarbooF NgHH MacdonaldD MahalLK High-throughput analysis reveals miRNA upregulating alpha-2,6-sialic acid through direct miRNA-mRNA interactions American Chemical Society Central Science 2022 8 1527 1536 Search in Google Scholar

Thu CT, Mahal LK. Sweet control: microRNA regulation of the glycome. Biochemistry. 2020;59: 3098–3110. ThuCT MahalLK Sweet control: microRNA regulation of the glycome Biochemistry 2020 59 3098 3110 Search in Google Scholar

Kawanishi K, Saha S, Diaz S, Vaill M, Sasmal A, Siddiqui SS, et al. Evolutionary conservation of human ketodeoxynonulosonic acid production is independent of sialoglycan biosynthesis. The Journal of Clinical Investigation. 2021;131: e137681. KawanishiK SahaS DiazS VaillM SasmalA SiddiquiSS Evolutionary conservation of human ketodeoxynonulosonic acid production is independent of sialoglycan biosynthesis The Journal of Clinical Investigation 2021 131 e137681 Search in Google Scholar

Bashir S, Fezeu LK, Leviatan Ben-Arye S, Yehuda S, Reuven EM, Szabo de Edelenyi F, et al. Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Sante study. BMC Medicine. 2020;18: 262. BashirS FezeuLK Leviatan Ben-AryeS YehudaS ReuvenEM Szabo de EdelenyiF Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Sante study BMC Medicine 2020 18 262 Search in Google Scholar

Diaz SL, Padler-Karavani V, Ghaderi D, Hurtado-Ziola N, Yu H, Chen X, et al. Sensitive and specific detection of the non-human sialic Acid N-glycolylneuraminic acid in human tissues and biotherapeutic products. PLoS One. 2009;4: e4241. DiazSL Padler-KaravaniV GhaderiD Hurtado-ZiolaN YuH ChenX Sensitive and specific detection of the non-human sialic Acid N-glycolylneuraminic acid in human tissues and biotherapeutic products PLoS One 2009 4 e4241 Search in Google Scholar

Schiller B, Hykollari A, Yan S, Paschinger K, Wilson IB. Complicated N-linked glycans in simple organisms. Biological Chemistry. 2012;393: 661–673. SchillerB HykollariA YanS PaschingerK WilsonIB Complicated N-linked glycans in simple organisms Biological Chemistry 2012 393 661 673 Search in Google Scholar

Huang YF, Aoki K, Akase S, Ishihara M, Liu YS, Yang G, et al. Global mapping of glycosylation pathways in human-derived cells. Developmental Cell. 2021;56: 1195–1209.e7. HuangYF AokiK AkaseS IshiharaM LiuYS YangG Global mapping of glycosylation pathways in human-derived cells Developmental Cell 2021 56 1195 1209.e7 Search in Google Scholar

Joud M, Moller M, Olsson ML. Identification of human glycosyltransferase genes expressed in erythroid cells predicts potential carbohydrate blood group loci. Scientific Reports. 2018;8: 6040. JoudM MollerM OlssonML Identification of human glycosyltransferase genes expressed in erythroid cells predicts potential carbohydrate blood group loci Scientific Reports 2018 8 6040 Search in Google Scholar

Jajosky RP, Wu SC, Zheng L, Jajosky AN, Jajosky PG, Josephson CD, et al. ABO blood group antigens and differential glycan expression: perspective on the evolution of common human enzyme deficiencies. IScience. 2023;26: 105798. JajoskyRP WuSC ZhengL JajoskyAN JajoskyPG JosephsonCD ABO blood group antigens and differential glycan expression: perspective on the evolution of common human enzyme deficiencies IScience 2023 26 105798 Search in Google Scholar

Arthur CM, Stowell SR. The development and consequences of red blood cell alloimmunization. Annual Review of Pathology. 2023;18: 537–564. ArthurCM StowellSR The development and consequences of red blood cell alloimmunization Annual Review of Pathology 2023 18 537 564 Search in Google Scholar

Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, et al. Innate immune lectins kill bacteria expressing blood group antigen. Nature Medicine. 2010;16: 295–301. StowellSR ArthurCM Dias-BaruffiM RodriguesLC GourdineJP Heimburg-MolinaroJ Innate immune lectins kill bacteria expressing blood group antigen Nature Medicine 2010 16 295 301 Search in Google Scholar

Abegaz SB. Human ABO blood groups and their associations with different diseases. BioMed Research International. 2021;2021: 6629060. AbegazSB Human ABO blood groups and their associations with different diseases BioMed Research International 2021 2021 6629060 Search in Google Scholar

Bua RO, Messina A, Sturiale L, Barone R, Garozzo D, Palmigiano A. N-glycomics of human erythrocytes. International Journal of Molecular Sciences. 2021;22: 8063. BuaRO MessinaA SturialeL BaroneR GarozzoD PalmigianoA N-glycomics of human erythrocytes International Journal of Molecular Sciences 2021 22 8063 Search in Google Scholar

Svensson L, Hult AK, Stamps R, Angstrom J, Teneberg S, Storry JR, et al. Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system. Blood. 2013;121: 1459–1468. SvenssonL HultAK StampsR AngstromJ TenebergS StorryJR Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system Blood 2013 121 1459 1468 Search in Google Scholar

De Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, et al. NIST interlaboratory study on glycosylation analysis of monoclonal antibodies: comparison of results from diverse analytical methods. Molecular and Cellular Proteomics. 2020;19: 11–30. De LeozMLA DuewerDL FungA LiuL YauHK PotterO NIST interlaboratory study on glycosylation analysis of monoclonal antibodies: comparison of results from diverse analytical methods Molecular and Cellular Proteomics 2020 19 11 30 Search in Google Scholar

Otaki M, Hirane N, Natsume-Kitatani Y, Nogami Itoh M, Shindo M, Kurebayashi Y, et al. Mouse tissue glycome atlas 2022 highlights inter-organ variation in major N-glycan profiles. Scientific Reports. 2022;12: 17804. OtakiM HiraneN Natsume-KitataniY Nogami ItohM ShindoM KurebayashiY Mouse tissue glycome atlas 2022 highlights inter-organ variation in major N-glycan profiles Scientific Reports 2022 12 17804 Search in Google Scholar

Suttapitugsakul S, Matsumoto Y, Aryal RP, Cummings RD. Large-scale and site-specific mapping of the murine brain O-glycoproteome with IMPa. Analytical Chemistry. 2023;95: 13423–13430. SuttapitugsakulS MatsumotoY AryalRP CummingsRD Large-scale and site-specific mapping of the murine brain O-glycoproteome with IMPa Analytical Chemistry 2023 95 13423 13430 Search in Google Scholar

Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nature Chemical Biology. 2007;3: 339–348. KhidekelN FicarroSB ClarkPM BryanMC SwaneyDL RexachJE Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics Nature Chemical Biology 2007 3 339 348 Search in Google Scholar

Noel M, Cummings RD, Mealer RG. N-glycans show distinct spatial distribution in mouse brain. Glycobiology. 2023;33: 935–942. NoelM CummingsRD MealerRG N-glycans show distinct spatial distribution in mouse brain Glycobiology 2023 33 935 942 Search in Google Scholar

Zaytseva OO, Seeling M, Kristic J, Lauc G, Pezer M, Nimmerjahn F. Fc-linked IgG N-glycosylation in FcgammaR knock-out mice. Frontiers in Cell and Developmental Biology. 2020;8: 67. ZaytsevaOO SeelingM KristicJ LaucG PezerM NimmerjahnF Fc-linked IgG N-glycosylation in FcgammaR knock-out mice Frontiers in Cell and Developmental Biology 2020 8 67 Search in Google Scholar

Durin Z, Houdou M, Legrand D, Foulquier F. Metalloglycobiology: the power of metals in regulating glycosylation. Biochimica et Biophysica Acta Gen Subj. 2023;1867: 130412. DurinZ HoudouM LegrandD FoulquierF Metalloglycobiology: the power of metals in regulating glycosylation Biochimica et Biophysica Acta Gen Subj 2023 1867 130412 Search in Google Scholar

eISSN:
2719-8634
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Chemistry, Biochemistry, Life Sciences, Evolutionary Biology, Philosophy, History of Philosophy, other, Physics, Astronomy and Astrophysics