[Ahmadi K., Kalantar B., Saeidi V., Harandi E.K.G., Janizadeh S., Ueda N. (2020): Comparison of Machine Learning Methods for Mapping the Stand Characteristics of Temperate Forests Using Multi-Spectral Sentinel-2 Data. Remote Sens 12:3019. https://doi.org/10.3390/rs12183019]Search in Google Scholar
[Alaimo L.S., Arcagni A., Fattore M., Maggino F., Quondamstefano V. (2022): Measuring Equitable and Sustainable Well-Being in Italian Regions: The Non-aggregative Approach. Soc Indic Res 161: 711–733. https://doi.org/10.1007/s11205-020-02388-7]Search in Google Scholar
[Ali A. (2019): Forest stand structure and functioning: Current knowledge and future challenges. Ecol Indic 98: 665–677. https://doi.org/10.1016/j.ecolind.2018.11.017]Search in Google Scholar
[Artusi R., Verderio P., Marubini E. (2002): Bravais-Pearson and Spearman Correlation Coefficients: Meaning, Test of Hypothesis and Confidence Interval. Int J Biol Markers 17: 148–151. DOI:10.1177/172460080201700213]Search in Google Scholar
[Bonett D.G., Wright T.A. (2000): Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65: 23–28. https://doi.org/10.1007/BF02294183]Search in Google Scholar
[Bravais A. (1846): Analyse mathématique sur les probabilités des erreurs de situation d’un point. Mémoires présentés par divers savants à l’Académie Royale des Sciences de l’Institut de France 9: 255–332.]Search in Google Scholar
[Broadhurst D.I., Kell D.B. (2006): Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2: 171–196. https://doi.org/10.1007/s11306-006-0037-z]Search in Google Scholar
[Carter B.E., Wiles J.R. (2014): Scientific consensus and social controversy: exploring relationships between students’ conceptions of the nature of science, biological evolution, and global climate change. Evo Edu Outreach 7: 6. https://doi.org/10.1186/s12052-014-0006-3]Search in Google Scholar
[Clutton-Brock T., Sheldon B.C. (2010): Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25: 562–573. https://doi.org/10.1016/j.tree.2010.08.002 ]Search in Google Scholar
[Dormann C.F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., Marquéz J.R.G., Gruber B., Lafourcade B., Leitão P.J., Münkemüller T., McClean C., Osborne P.E., Reineking B., Schröder B., Skidmore A.K., Zurell D., Lautenbach S. (2013): Collinearity: a review of methods to deal with it and a simulation study evaluating their performance Ecography 36: 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x]Search in Google Scholar
[Dwyer R.G., Krueck N.C., Udyawer V., Heupel M.R., Chapman D., Pratt H.L., Garla R., Simpfendorfer C.A. (2020): Individual and Population Benefits of Marine Reserves for Reef Sharks. Curr Biol 30: 480–489. https://doi.org/10.1016/j.cub.2019.12.005]Search in Google Scholar
[Eisinga R., Grotenhuis M.T., Pelzer B. (2013): The reliability of a two-item scale: Pearson, Cronbach, or Spearman-Brown? Int J Public Health 58: 637–642. https://doi.org/10.1007/s00038-012-0416-3]Search in Google Scholar
[Fontana M.D., de Araújo Moreira F., Di Giulio G.M., Malheiros T.F. (2020): The water-energy-food nexus research in the Brazilian context: What are we missing? Environ Sci Policy 112: 172–180. https://doi.org/10.1016/j.envsci.2020.06.021]Search in Google Scholar
[Hauke J., Kossowski T. (2011): Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data. Quaestiones Geographicae 30: 87–93. DOI:10.2478/v10117-011-0021-1]Search in Google Scholar
[Hohenlohe P.A., Funk W.C., Rajora O.P. (2021): Population genomics for wildlife conservation and management. Mol Ecol 30: 62–82. https://doi.org/10.1111/mec.15720]Search in Google Scholar
[Horváth I.G., Németh Á., Lenkey Z., Alessandri N., Tufano F., Kis P., Gaszner B., Cziráki A. (2010): Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens 28: 2068–2075. DOI:10.1097/HJH.0b013e32833c8a1a]Search in Google Scholar
[Hyyppä J., Hyyppä H., Inkinen M., Engdahl M., Linko S., Zhu Y.H. (2000): Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. For Ecol Manage 128: 109–120. https://doi.org/10.1016/S0378-1127(99)00278-9]Search in Google Scholar
[Iqbal W., Tang Y.M., Chau K.Y., Irfan M., Mohsin M. (2021): Nexus between air pollution and NCOV-2019 in China: Application of negative binomial regression analysis. Process Saf Environ Prot 150: 557–565. https://doi.org/10.1016/j.psep.2021.04.039]Search in Google Scholar
[Jankowski A., Wyka T.P., Oleksyn J. (2021): Axial variability of anatomical structure and the scaling relationships in Scots pine (Pinus sylvestris L.) needles of contrasting origins. Flora 274: 151747. https://doi.org/10.1016/j.flora.2020.151747]Search in Google Scholar
[Lateef M., Keikhosrokiani P. (2023): Predicting Critical Success Factors of Business Intelligence Implementation for Improving SMEs’ Performances: a Case Study of Lagos State., Nigeria. J Knowl Econ 14: 2081–2106. https://doi.org/10.1007/s13132-022-00961-8]Search in Google Scholar
[Lefsky M.A., Hudak A.T., Cohen W.B., Acker S.A. (2005): Patterns of covariance between forest stand and canopy structure in the Pacific Northwest. Remote Sens Environ 95: 517–531. https://doi.org/10.1016/j.rse.2005.01.004]Search in Google Scholar
[Lin W.B. (2007): Factors affecting the correlation between interactive mechanism of strategic alliance and technological knowledge transfer performance. J High Technol Manage Res 17: 139–155. https://doi.org/10.1016/j.hitech.2006.11.003 ]Search in Google Scholar
[Lindinger-Sternart S., Kaur V., Widyaningsih Y., Patel A.K. (2021): COVID-19 phobia across the world: Impact of resilience on COVID-19 phobia in different nations. Couns Psychother Res 21: 290–302. https://doi.org/10.1002/capr.12387]Search in Google Scholar
[Min Q., Lu Y., Liu Z., Su C., Wang B. (2019): Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry. Int J Inf Manage 49: 502–519. https://doi.org/10.1016/j.ijinfomgt.2019.05.020]Search in Google Scholar
[Moews B., Herrmann J.M., Ibikunle G. (2019): Lagged correlation-based deep learning for directional trend change prediction in financial time series. Expert Syst Appl 120: 197–206. https://doi.org/10.1016/j.eswa.2018.11.027]Search in Google Scholar
[Moradi F., Darvishsefat A.A., Pourrahmati M.R., Deljouei A., Borz S.A. (2022): Estimating Aboveground Biomass in Dense Hyrcanian Forests by the Use of Sentinel-2 Data. Forests 13: 104. https://doi.org/10.3390/f13010104]Search in Google Scholar
[Nakagawa S., Cuthill I.C. (2007): Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82: 591–605. https://doi.org/10.1111/j.1469-185X.2007.00027.x]Search in Google Scholar
[Neumann M., Starlinger F. (2001): The significance of different indices for stand structure and diversity in forests. For Ecol Manage 145: 91–106. https://doi.org/10.1016/S0378-1127(00)00577-6]Search in Google Scholar
[Noor M.B.T., Zenia N.Z., Kaiser M.S., Al Mamun S., Mahmud M. (2020): Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Inf 7: 11. https://doi.org/10.1186/s40708-020-00112-2]Search in Google Scholar
[Nowosad K., Bocianowski J., Kianersi F., Pour-Aboughadareh A. (2023): Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize (Zea mays L.). Agriculture 13: 2005. https://doi.org/10.3390/agriculture13102005]Search in Google Scholar
[Orsini L., Vanoverbeke J., Swillen I., Mergeay J., De Meester L. (2013): Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol 22: 5983–5999. https://doi.org/10.1111/mec.12561]Search in Google Scholar
[Pearson K. (1896): Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Phil Trans R Soc A 187: 253–318.]Search in Google Scholar
[Pearson K. (1908): On a mathematical theory of determinantal inheritance, from suggestions and notes of the late W. F. R. Weldon. Biometrika 6: 80–93. https://doi.org/10.1093/biomet/6.1.80]Search in Google Scholar
[Pearson K. (1920): Notes on the history of correlation. Biometrika 13: 25–45.]Search in Google Scholar
[Piovani J.I. (2008): The historical construction of correlation as a conceptual and operative instrument for empirical research. Qual Quant 42: 757–777.]Search in Google Scholar
[Puliti S., Breidenbach J., Astrup R. (2020): Estimation of Forest Growing Stock Volume with UAV Laser Scanning Data: Can It Be Done without Field Data? Remote Sens 12: 1245. https://doi.org/10.3390/rs12081245]Search in Google Scholar
[Rosato A., Tenori L., Cascante M., De Atauri Carulla P.R., dos Santos V.A.P.M., Saccenti E. (2018): From correlation to causation: analysis of metabolomics data using systems biology approaches. Metabolomics 14: 37. https://doi.org/10.1007/s11306-018-1335-y]Search in Google Scholar
[Rutledge J., Oh H., Wyss-Coray T. (2022): Measuring biological age using omics data. Nat Rev Genet 23: 715–727. https://doi.org/10.1038/s41576-022-00511-7]Search in Google Scholar
[Saalidong B.M., Aram S.A., Out S., Lartey P.O. (2022): Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PLoS ONE 17: e0262117. https://doi.org/10.1371/journal.pone.0262117]Search in Google Scholar
[Samal K., Mahapatra S., Ali H. (2022): Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus 6: 100076. https://doi.org/10.1016/j.nexus.2022.100076 ]Search in Google Scholar
[Schober P., Boer C., Schwarte L.A. (2018): Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia 126: 1763–1768. https://doi.org/10.1213/ANE.0000000000002864]Search in Google Scholar
[Shimizu I., Kikukawa M., Tada T., Kimura T., Duvivier R., van der Vleuten C. (2020): Measuring social interdependence in collaborative learning: instrument development and validation. BMC Med Educ 20: 177. https://doi.org/10.1186/s12909-020-02088-3]Search in Google Scholar
[Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T., Chabudziński Ł., Dobrowolski R., Grzegorczyk I., Jodłowski M., Kistowski M., Kot R., Krąż P., Lechnio J., Macias A., Majchrowska A., Malinowska E., Migoń P., Myga-Piątek U., Nita J., Papińska E., Rodzik J., Strzyż M., Terpiłowski S., Ziaja W. (2018): Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr Pol 91: 143–170. DOI:10.7163/GPol.0115]Search in Google Scholar
[Song H.Y., Park S. (2020): An Analysis of Correlation between Personality and Visiting Place using Spearman’s Rank Correlation Coefficient. KSII Trans Internet Inf Syst 14: 1951–1966. http://doi.org/10.3837/tiis.2020.05.005]Search in Google Scholar
[Spearman C. (1904): The Proof and Measurement of Association between Two Things. The Amer J Psychol 15: 72–101. https://doi.org/10.2307/1412159]Search in Google Scholar
[Stigler S.M. (1988): Francis Galton’s account of the invention of correlation. Stat Sci 4: 73–86.]Search in Google Scholar
[Thielmann I., Spadaro G., Balliet D. (2020): Personality and prosocial behavior: A theoretical framework and meta-analysis Psychological Bulletin 146: 30–90. https://doi.org/10.1037/bul0000217]Search in Google Scholar
[Tortella G.R., Rubilar O., Durán N., Diez M.C., Martínez M., Parada J., Seabra A.B. (2020): Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater 390: 121974. https://doi.org/10.1016/j.jhazmat.2019.121974]Search in Google Scholar
[Tundys B., Bretyn A., Urbaniak M. (2021): Energy Poverty and Sustainable Economic Development: An Exploration of Correlations and Interdependencies in European Countries. Energies 14: 7640. https://doi.org/10.3390/en14227640]Search in Google Scholar
[Udovičić M., Baždarić K., Bilić-Zulle L., Petrovečki M. (2007): What we need to know when calculating the coefficient of correlation? Biochemia Medica 17: 10–15.]Search in Google Scholar
[VSN International Genstat for Windows (2023): VSN International Genstat for Windows., 23rd Edition; VSN International: Hemel Hempstead, UK.]Search in Google Scholar
[Walker H.M. (1928): The relation of Plana and Bravais to theory of correlation. Isis 10: 466–484.]Search in Google Scholar
[Waszak N., Robertson I., Puchałka R., Przybylak R., Pospieszyńska A., Koprowski M. (2021): Investigating the Climate-Growth Response of Scots Pine (Pinus sylvestris L.) in Northern Poland. Atmosphere 12: 1690. https://doi.org/10.3390/atmos12121690]Search in Google Scholar
[Weida F.M. (1927): On various conceptions of correlation. Ann Math 29: 276–312.]Search in Google Scholar
[Wright I.J., Ackerly D.D., Bongers F., Harms K.E., Ibarra-Manriquez G., Martinez-Ramos M., Mazer S.J., Muller-Landau H.C., Paz H., Pitman N.C.A., Poorter L., Silman M.R., Vriesendorp C.F., Webb C.O., Westoby M., Wright S.J. (2007): Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests. Ann Bot 99: 1003–1015. https://doi.org/10.1093/aob/mcl066]Search in Google Scholar
[Wrońska-Pilarek D., Krysztofiak-Kaniewska A., Matusiak K., Bocianowski J., Wiatrowska B., Okoński B. (2023b): Does distance from a sand mine affect needle features in Pinus sylvestris L.? For Ecol Manage 546: 121276. https://doi.org/10.1016/j.foreco.2023.121276]Search in Google Scholar
[Wrońska-Pilarek D., Maciejewska–Rutkowska I., Lechowicz K., Bocianowski J., Hauke–Kowalska M., Baranowska M., Korzeniewicz R. (2023a): The effect of herbicides on morphological features of pollen grains in Prunus serotina Ehrh. in the context of elimination of this invasive species from European forests. Sci Rep 13: 4657. https://doi.org/10.1038/s41598-023-31010-2]Search in Google Scholar